MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Unicode version

Theorem prdsinvlem 14881
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y  |-  Y  =  ( S X_s R )
prdsinvlem.b  |-  B  =  ( Base `  Y
)
prdsinvlem.p  |-  .+  =  ( +g  `  Y )
prdsinvlem.s  |-  ( ph  ->  S  e.  V )
prdsinvlem.i  |-  ( ph  ->  I  e.  W )
prdsinvlem.r  |-  ( ph  ->  R : I --> Grp )
prdsinvlem.f  |-  ( ph  ->  F  e.  B )
prdsinvlem.z  |-  .0.  =  ( 0g  o.  R
)
prdsinvlem.n  |-  N  =  ( y  e.  I  |->  ( ( inv g `  ( R `  y
) ) `  ( F `  y )
) )
Assertion
Ref Expression
prdsinvlem  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Distinct variable groups:    y, B    y, F    y, I    ph, y    y, R    y, S    y, V    y, W    y, Y
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem prdsinvlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3  |-  N  =  ( y  e.  I  |->  ( ( inv g `  ( R `  y
) ) `  ( F `  y )
) )
2 prdsinvlem.r . . . . . . 7  |-  ( ph  ->  R : I --> Grp )
32ffvelrnda 5829 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Grp )
4 prdsinvlem.y . . . . . . 7  |-  Y  =  ( S X_s R )
5 prdsinvlem.b . . . . . . 7  |-  B  =  ( Base `  Y
)
6 prdsinvlem.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
76adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  S  e.  V )
8 prdsinvlem.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
98adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  W )
10 ffn 5550 . . . . . . . . 9  |-  ( R : I --> Grp  ->  R  Fn  I )
112, 10syl 16 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
1211adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  R  Fn  I )
13 prdsinvlem.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
1413adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  e.  B )
15 simpr 448 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  I )
164, 5, 7, 9, 12, 14, 15prdsbasprj 13649 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  ( R `  y )
) )
17 eqid 2404 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
18 eqid 2404 . . . . . . 7  |-  ( inv g `  ( R `
 y ) )  =  ( inv g `  ( R `  y
) )
1917, 18grpinvcl 14805 . . . . . 6  |-  ( ( ( R `  y
)  e.  Grp  /\  ( F `  y )  e.  ( Base `  ( R `  y )
) )  ->  (
( inv g `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
203, 16, 19syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( inv g `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
2120ralrimiva 2749 . . . 4  |-  ( ph  ->  A. y  e.  I 
( ( inv g `  ( R `  y
) ) `  ( F `  y )
)  e.  ( Base `  ( R `  y
) ) )
224, 5, 6, 8, 11prdsbasmpt 13647 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( ( inv g `  ( R `
 y ) ) `
 ( F `  y ) ) )  e.  B  <->  A. y  e.  I  ( ( inv g `  ( R `
 y ) ) `
 ( F `  y ) )  e.  ( Base `  ( R `  y )
) ) )
2321, 22mpbird 224 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( ( inv g `  ( R `  y
) ) `  ( F `  y )
) )  e.  B
)
241, 23syl5eqel 2488 . 2  |-  ( ph  ->  N  e.  B )
252ffvelrnda 5829 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  Grp )
266adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
278adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
2811adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  R  Fn  I )
2913adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  B )
30 simpr 448 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
314, 5, 26, 27, 28, 29, 30prdsbasprj 13649 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  ( R `  x )
) )
32 eqid 2404 . . . . . . 7  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
33 eqid 2404 . . . . . . 7  |-  ( +g  `  ( R `  x
) )  =  ( +g  `  ( R `
 x ) )
34 eqid 2404 . . . . . . 7  |-  ( 0g
`  ( R `  x ) )  =  ( 0g `  ( R `  x )
)
35 eqid 2404 . . . . . . 7  |-  ( inv g `  ( R `
 x ) )  =  ( inv g `  ( R `  x
) )
3632, 33, 34, 35grplinv 14806 . . . . . 6  |-  ( ( ( R `  x
)  e.  Grp  /\  ( F `  x )  e.  ( Base `  ( R `  x )
) )  ->  (
( ( inv g `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
3725, 31, 36syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( inv g `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
38 fveq2 5687 . . . . . . . . . 10  |-  ( y  =  x  ->  ( R `  y )  =  ( R `  x ) )
3938fveq2d 5691 . . . . . . . . 9  |-  ( y  =  x  ->  ( inv g `  ( R `
 y ) )  =  ( inv g `  ( R `  x
) ) )
40 fveq2 5687 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
4139, 40fveq12d 5693 . . . . . . . 8  |-  ( y  =  x  ->  (
( inv g `  ( R `  y ) ) `  ( F `
 y ) )  =  ( ( inv g `  ( R `
 x ) ) `
 ( F `  x ) ) )
42 fvex 5701 . . . . . . . 8  |-  ( ( inv g `  ( R `  x )
) `  ( F `  x ) )  e. 
_V
4341, 1, 42fvmpt 5765 . . . . . . 7  |-  ( x  e.  I  ->  ( N `  x )  =  ( ( inv g `  ( R `
 x ) ) `
 ( F `  x ) ) )
4443adantl 453 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( N `  x )  =  ( ( inv g `  ( R `
 x ) ) `
 ( F `  x ) ) )
4544oveq1d 6055 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( ( ( inv g `  ( R `
 x ) ) `
 ( F `  x ) ) ( +g  `  ( R `
 x ) ) ( F `  x
) ) )
46 prdsinvlem.z . . . . . . 7  |-  .0.  =  ( 0g  o.  R
)
4746fveq1i 5688 . . . . . 6  |-  (  .0.  `  x )  =  ( ( 0g  o.  R
) `  x )
48 fvco2 5757 . . . . . . 7  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
4911, 48sylan 458 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( 0g  o.  R
) `  x )  =  ( 0g `  ( R `  x ) ) )
5047, 49syl5eq 2448 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (  .0.  `  x )  =  ( 0g `  ( R `  x )
) )
5137, 45, 503eqtr4d 2446 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  (  .0.  `  x
) )
5251mpteq2dva 4255 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x
) ) ( F `
 x ) ) )  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
53 prdsinvlem.p . . . 4  |-  .+  =  ( +g  `  Y )
544, 5, 6, 8, 11, 24, 13, 53prdsplusgval 13650 . . 3  |-  ( ph  ->  ( N  .+  F
)  =  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x )
) ( F `  x ) ) ) )
55 fn0g 14663 . . . . . . 7  |-  0g  Fn  _V
5655a1i 11 . . . . . 6  |-  ( ph  ->  0g  Fn  _V )
57 ssv 3328 . . . . . . 7  |-  ran  R  C_ 
_V
5857a1i 11 . . . . . 6  |-  ( ph  ->  ran  R  C_  _V )
59 fnco 5512 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  ( 0g  o.  R
)  Fn  I )
6056, 11, 58, 59syl3anc 1184 . . . . 5  |-  ( ph  ->  ( 0g  o.  R
)  Fn  I )
6146fneq1i 5498 . . . . 5  |-  (  .0. 
Fn  I  <->  ( 0g  o.  R )  Fn  I
)
6260, 61sylibr 204 . . . 4  |-  ( ph  ->  .0.  Fn  I )
63 dffn5 5731 . . . 4  |-  (  .0. 
Fn  I  <->  .0.  =  ( x  e.  I  |->  (  .0.  `  x
) ) )
6462, 63sylib 189 . . 3  |-  ( ph  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
6552, 54, 643eqtr4d 2446 . 2  |-  ( ph  ->  ( N  .+  F
)  =  .0.  )
6624, 65jca 519 1  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    C_ wss 3280    e. cmpt 4226   ran crn 4838    o. ccom 4841    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   X_scprds 13624   0gc0g 13678   Grpcgrp 14640   inv gcminusg 14641
This theorem is referenced by:  prdsgrpd  14882  prdsinvgd  14883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768
  Copyright terms: Public domain W3C validator