MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsidlem Structured version   Unicode version

Theorem prdsidlem 15759
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y  |-  Y  =  ( S X_s R )
prdsplusgcl.b  |-  B  =  ( Base `  Y
)
prdsplusgcl.p  |-  .+  =  ( +g  `  Y )
prdsplusgcl.s  |-  ( ph  ->  S  e.  V )
prdsplusgcl.i  |-  ( ph  ->  I  e.  W )
prdsplusgcl.r  |-  ( ph  ->  R : I --> Mnd )
prdsidlem.z  |-  .0.  =  ( 0g  o.  R
)
Assertion
Ref Expression
prdsidlem  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
Distinct variable groups:    x,  .+    x, B    x, I    x, R    ph, x    x, S    x, V    x, W    x, Y
Allowed substitution hint:    .0. ( x)

Proof of Theorem prdsidlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4  |-  .0.  =  ( 0g  o.  R
)
2 fvex 5867 . . . . . 6  |-  ( R `
 y )  e. 
_V
32a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  _V )
4 prdsplusgcl.r . . . . . 6  |-  ( ph  ->  R : I --> Mnd )
54feqmptd 5911 . . . . 5  |-  ( ph  ->  R  =  ( y  e.  I  |->  ( R `
 y ) ) )
6 fn0g 15739 . . . . . . 7  |-  0g  Fn  _V
76a1i 11 . . . . . 6  |-  ( ph  ->  0g  Fn  _V )
8 dffn5 5904 . . . . . 6  |-  ( 0g  Fn  _V  <->  0g  =  ( x  e.  _V  |->  ( 0g `  x ) ) )
97, 8sylib 196 . . . . 5  |-  ( ph  ->  0g  =  ( x  e.  _V  |->  ( 0g
`  x ) ) )
10 fveq2 5857 . . . . 5  |-  ( x  =  ( R `  y )  ->  ( 0g `  x )  =  ( 0g `  ( R `  y )
) )
113, 5, 9, 10fmptco 6045 . . . 4  |-  ( ph  ->  ( 0g  o.  R
)  =  ( y  e.  I  |->  ( 0g
`  ( R `  y ) ) ) )
121, 11syl5eq 2513 . . 3  |-  ( ph  ->  .0.  =  ( y  e.  I  |->  ( 0g
`  ( R `  y ) ) ) )
134ffvelrnda 6012 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
14 eqid 2460 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
15 eqid 2460 . . . . . . 7  |-  ( 0g
`  ( R `  y ) )  =  ( 0g `  ( R `  y )
)
1614, 15mndidcl 15745 . . . . . 6  |-  ( ( R `  y )  e.  Mnd  ->  ( 0g `  ( R `  y ) )  e.  ( Base `  ( R `  y )
) )
1713, 16syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( 0g `  ( R `  y ) )  e.  ( Base `  ( R `  y )
) )
1817ralrimiva 2871 . . . 4  |-  ( ph  ->  A. y  e.  I 
( 0g `  ( R `  y )
)  e.  ( Base `  ( R `  y
) ) )
19 prdsplusgcl.y . . . . 5  |-  Y  =  ( S X_s R )
20 prdsplusgcl.b . . . . 5  |-  B  =  ( Base `  Y
)
21 prdsplusgcl.s . . . . 5  |-  ( ph  ->  S  e.  V )
22 prdsplusgcl.i . . . . 5  |-  ( ph  ->  I  e.  W )
23 ffn 5722 . . . . . 6  |-  ( R : I --> Mnd  ->  R  Fn  I )
244, 23syl 16 . . . . 5  |-  ( ph  ->  R  Fn  I )
2519, 20, 21, 22, 24prdsbasmpt 14714 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( 0g `  ( R `  y ) ) )  e.  B  <->  A. y  e.  I  ( 0g `  ( R `
 y ) )  e.  ( Base `  ( R `  y )
) ) )
2618, 25mpbird 232 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( 0g `  ( R `  y )
) )  e.  B
)
2712, 26eqeltrd 2548 . 2  |-  ( ph  ->  .0.  e.  B )
281fveq1i 5858 . . . . . . . . . 10  |-  (  .0.  `  y )  =  ( ( 0g  o.  R
) `  y )
29 fvco2 5933 . . . . . . . . . . 11  |-  ( ( R  Fn  I  /\  y  e.  I )  ->  ( ( 0g  o.  R ) `  y
)  =  ( 0g
`  ( R `  y ) ) )
3024, 29sylan 471 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  (
( 0g  o.  R
) `  y )  =  ( 0g `  ( R `  y ) ) )
3128, 30syl5eq 2513 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  (  .0.  `  y )  =  ( 0g `  ( R `  y )
) )
3231adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (  .0.  `  y )  =  ( 0g `  ( R `  y )
) )
3332oveq1d 6290 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
(  .0.  `  y
) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( ( 0g `  ( R `  y ) ) ( +g  `  ( R `  y )
) ( x `  y ) ) )
344adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  R : I --> Mnd )
3534ffvelrnda 6012 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
3621ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  S  e.  V )
3722ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  I  e.  W )
3824ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  R  Fn  I )
39 simplr 754 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  x  e.  B )
40 simpr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  y  e.  I )
4119, 20, 36, 37, 38, 39, 40prdsbasprj 14716 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
x `  y )  e.  ( Base `  ( R `  y )
) )
42 eqid 2460 . . . . . . . . 9  |-  ( +g  `  ( R `  y
) )  =  ( +g  `  ( R `
 y ) )
4314, 42, 15mndlid 15747 . . . . . . . 8  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( x `  y
)  e.  ( Base `  ( R `  y
) ) )  -> 
( ( 0g `  ( R `  y ) ) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( x `  y
) )
4435, 41, 43syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( 0g `  ( R `  y )
) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( x `  y
) )
4533, 44eqtrd 2501 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
(  .0.  `  y
) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( x `  y
) )
4645mpteq2dva 4526 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
y  e.  I  |->  ( (  .0.  `  y
) ( +g  `  ( R `  y )
) ( x `  y ) ) )  =  ( y  e.  I  |->  ( x `  y ) ) )
4721adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  S  e.  V )
4822adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  I  e.  W )
4924adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  R  Fn  I )
5027adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  .0.  e.  B )
51 simpr 461 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
52 prdsplusgcl.p . . . . . 6  |-  .+  =  ( +g  `  Y )
5319, 20, 47, 48, 49, 50, 51, 52prdsplusgval 14717 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  ( y  e.  I  |->  ( (  .0.  `  y ) ( +g  `  ( R `  y
) ) ( x `
 y ) ) ) )
5419, 20, 47, 48, 49, 51prdsbasfn 14715 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  Fn  I )
55 dffn5 5904 . . . . . 6  |-  ( x  Fn  I  <->  x  =  ( y  e.  I  |->  ( x `  y
) ) )
5654, 55sylib 196 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  x  =  ( y  e.  I  |->  ( x `  y ) ) )
5746, 53, 563eqtr4d 2511 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
5832oveq2d 6291 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( x `  y
) ( +g  `  ( R `  y )
) (  .0.  `  y ) )  =  ( ( x `  y ) ( +g  `  ( R `  y
) ) ( 0g
`  ( R `  y ) ) ) )
5914, 42, 15mndrid 15748 . . . . . . . 8  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( x `  y
)  e.  ( Base `  ( R `  y
) ) )  -> 
( ( x `  y ) ( +g  `  ( R `  y
) ) ( 0g
`  ( R `  y ) ) )  =  ( x `  y ) )
6035, 41, 59syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( x `  y
) ( +g  `  ( R `  y )
) ( 0g `  ( R `  y ) ) )  =  ( x `  y ) )
6158, 60eqtrd 2501 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( x `  y
) ( +g  `  ( R `  y )
) (  .0.  `  y ) )  =  ( x `  y
) )
6261mpteq2dva 4526 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
y  e.  I  |->  ( ( x `  y
) ( +g  `  ( R `  y )
) (  .0.  `  y ) ) )  =  ( y  e.  I  |->  ( x `  y ) ) )
6319, 20, 47, 48, 49, 51, 50, 52prdsplusgval 14717 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( y  e.  I  |->  ( ( x `
 y ) ( +g  `  ( R `
 y ) ) (  .0.  `  y
) ) ) )
6462, 63, 563eqtr4d 2511 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
6557, 64jca 532 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
6665ralrimiva 2871 . 2  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
6727, 66jca 532 1  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106    |-> cmpt 4498    o. ccom 4996    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   Basecbs 14479   +g cplusg 14544   0gc0g 14684   X_scprds 14690   Mndcmnd 15715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-plusg 14557  df-mulr 14558  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-hom 14568  df-cco 14569  df-0g 14686  df-prds 14692  df-mnd 15721
This theorem is referenced by:  prdsmndd  15760  prds0g  15761
  Copyright terms: Public domain W3C validator