MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdshom Structured version   Unicode version

Theorem prdshom 14405
Description: Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdshom.h  |-  H  =  ( Hom  `  P
)
Assertion
Ref Expression
prdshom  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    H( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdshom
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2443 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 14395 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqid 2443 . . . 4  |-  ( +g  `  P )  =  ( +g  `  P )
91, 4, 5, 6, 3, 8prdsplusg 14396 . . 3  |-  ( ph  ->  ( +g  `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
10 eqid 2443 . . . 4  |-  ( .r
`  P )  =  ( .r `  P
)
111, 4, 5, 6, 3, 10prdsmulr 14397 . . 3  |-  ( ph  ->  ( .r `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
12 eqid 2443 . . . 4  |-  ( .s
`  P )  =  ( .s `  P
)
131, 4, 5, 6, 3, 2, 12prdsvsca 14398 . . 3  |-  ( ph  ->  ( .s `  P
)  =  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) ) )
14 eqidd 2444 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
15 eqid 2443 . . . 4  |-  (TopSet `  P )  =  (TopSet `  P )
161, 4, 5, 6, 3, 15prdstset 14404 . . 3  |-  ( ph  ->  (TopSet `  P )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
17 eqid 2443 . . . 4  |-  ( le
`  P )  =  ( le `  P
)
181, 4, 5, 6, 3, 17prdsle 14400 . . 3  |-  ( ph  ->  ( le `  P
)  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
19 eqid 2443 . . . 4  |-  ( dist `  P )  =  (
dist `  P )
201, 4, 5, 6, 3, 19prdsds 14402 . . 3  |-  ( ph  ->  ( dist `  P
)  =  ( f  e.  B ,  g  e.  B  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
21 eqidd 2444 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
22 eqidd 2444 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
231, 2, 3, 7, 9, 11, 13, 14, 16, 18, 20, 21, 22, 4, 5prdsval 14393 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
24 prdshom.h . 2  |-  H  =  ( Hom  `  P
)
25 homid 14354 . 2  |-  Hom  = Slot  ( Hom  `  ndx )
26 ovssunirn 6117 . . . . . . . . . . 11  |-  ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( Hom  `  ( R `  x )
)
2725strfvss 14192 . . . . . . . . . . . . 13  |-  ( Hom  `  ( R `  x
) )  C_  U. ran  ( R `  x )
28 fvssunirn 5713 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
29 rnss 5068 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
30 uniss 4112 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
3128, 29, 30mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
3227, 31sstri 3365 . . . . . . . . . . . 12  |-  ( Hom  `  ( R `  x
) )  C_  U. ran  U.
ran  R
33 rnss 5068 . . . . . . . . . . . 12  |-  ( ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  R  ->  ran  ( Hom  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R )
34 uniss 4112 . . . . . . . . . . . 12  |-  ( ran  ( Hom  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  U. ran  R )
3532, 33, 34mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  U. ran  R
3626, 35sstri 3365 . . . . . . . . . 10  |-  ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
3736rgenw 2783 . . . . . . . . 9  |-  A. x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R
38 ss2ixp 7276 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R  ->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) 
C_  X_ x  e.  I  U. ran  U. ran  U. ran  R )
3937, 38ax-mp 5 . . . . . . . 8  |-  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  C_  X_ x  e.  I  U. ran  U. ran  U. ran  R
40 dmexg 6509 . . . . . . . . . . 11  |-  ( R  e.  W  ->  dom  R  e.  _V )
415, 40syl 16 . . . . . . . . . 10  |-  ( ph  ->  dom  R  e.  _V )
423, 41eqeltrrd 2518 . . . . . . . . 9  |-  ( ph  ->  I  e.  _V )
43 rnexg 6510 . . . . . . . . . . . 12  |-  ( R  e.  W  ->  ran  R  e.  _V )
44 uniexg 6377 . . . . . . . . . . . 12  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
455, 43, 443syl 20 . . . . . . . . . . 11  |-  ( ph  ->  U. ran  R  e. 
_V )
46 rnexg 6510 . . . . . . . . . . 11  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
47 uniexg 6377 . . . . . . . . . . 11  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4845, 46, 473syl 20 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
49 rnexg 6510 . . . . . . . . . 10  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
50 uniexg 6377 . . . . . . . . . 10  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
5148, 49, 503syl 20 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  U.
ran  R  e.  _V )
52 ixpconstg 7272 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  U.
ran  U. ran  U. ran  R  e.  _V )  ->  X_ x  e.  I  U. ran  U. ran  U. ran  R  =  ( U. ran  U.
ran  U. ran  R  ^m  I ) )
5342, 51, 52syl2anc 661 . . . . . . . 8  |-  ( ph  -> 
X_ x  e.  I  U. ran  U. ran  U. ran  R  =  ( U. ran  U. ran  U. ran  R  ^m  I ) )
5439, 53syl5sseq 3404 . . . . . . 7  |-  ( ph  -> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) 
C_  ( U. ran  U.
ran  U. ran  R  ^m  I ) )
55 ovex 6116 . . . . . . . 8  |-  ( U. ran  U. ran  U. ran  R  ^m  I )  e. 
_V
5655elpw2 4456 . . . . . . 7  |-  ( X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I )  <->  X_ x  e.  I  ( ( f `
 x ) ( Hom  `  ( R `  x ) ) ( g `  x ) )  C_  ( U. ran  U. ran  U. ran  R  ^m  I ) )
5754, 56sylibr 212 . . . . . 6  |-  ( ph  -> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) )  e.  ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
5857ralrimivw 2800 . . . . 5  |-  ( ph  ->  A. g  e.  B  X_ x  e.  I  ( ( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I ) )
5958ralrimivw 2800 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  X_ x  e.  I  ( ( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I ) )
60 eqid 2443 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) )  =  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )
6160fmpt2 6641 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  e.  ~P ( U. ran  U. ran  U.
ran  R  ^m  I )  <-> 
( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
6259, 61sylib 196 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
63 fvex 5701 . . . . . 6  |-  ( Base `  P )  e.  _V
646, 63eqeltri 2513 . . . . 5  |-  B  e. 
_V
6564, 64xpex 6508 . . . 4  |-  ( B  X.  B )  e. 
_V
6665a1i 11 . . 3  |-  ( ph  ->  ( B  X.  B
)  e.  _V )
6755pwex 4475 . . . 4  |-  ~P ( U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
6867a1i 11 . . 3  |-  ( ph  ->  ~P ( U. ran  U.
ran  U. ran  R  ^m  I )  e.  _V )
69 fex2 6532 . . 3  |-  ( ( ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I )  /\  ( B  X.  B )  e. 
_V  /\  ~P ( U. ran  U. ran  U. ran  R  ^m  I )  e.  _V )  -> 
( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
7062, 66, 68, 69syl3anc 1218 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
71 snsspr1 4022 . . . 4  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. }
72 ssun2 3520 . . . 4  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. }  C_  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
7371, 72sstri 3365 . . 3  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
74 ssun2 3520 . . 3  |-  ( {
<. (TopSet `  ndx ) ,  (TopSet `  P ) >. ,  <. ( le `  ndx ) ,  ( le
`  P ) >. ,  <. ( dist `  ndx ) ,  ( dist `  P ) >. }  u.  {
<. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) 
C_  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7573, 74sstri 3365 . 2  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( .r `  P
) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7623, 24, 25, 70, 75prdsvallem 14392 1  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   A.wral 2715   _Vcvv 2972    u. cun 3326    C_ wss 3328   ~Pcpw 3860   {csn 3877   {cpr 3879   {ctp 3881   <.cop 3883   U.cuni 4091    e. cmpt 4350    X. cxp 4838   dom cdm 4840   ran crn 4841   -->wf 5414   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   1stc1st 6575   2ndc2nd 6576    ^m cmap 7214   X_cixp 7263   ndxcnx 14171   Basecbs 14174   +g cplusg 14238   .rcmulr 14239  Scalarcsca 14241   .scvsca 14242   .icip 14243  TopSetcts 14244   lecple 14245   distcds 14247   Hom chom 14249  compcco 14250    gsumg cgsu 14379   X_scprds 14384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-plusg 14251  df-mulr 14252  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-hom 14262  df-cco 14263  df-prds 14386
This theorem is referenced by:  prdsco  14406
  Copyright terms: Public domain W3C validator