MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdshom Structured version   Unicode version

Theorem prdshom 15358
Description: Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdshom.h  |-  H  =  ( Hom  `  P
)
Assertion
Ref Expression
prdshom  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    H( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdshom
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2423 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 15348 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqid 2423 . . . 4  |-  ( +g  `  P )  =  ( +g  `  P )
91, 4, 5, 6, 3, 8prdsplusg 15349 . . 3  |-  ( ph  ->  ( +g  `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
10 eqid 2423 . . . 4  |-  ( .r
`  P )  =  ( .r `  P
)
111, 4, 5, 6, 3, 10prdsmulr 15350 . . 3  |-  ( ph  ->  ( .r `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
12 eqid 2423 . . . 4  |-  ( .s
`  P )  =  ( .s `  P
)
131, 4, 5, 6, 3, 2, 12prdsvsca 15351 . . 3  |-  ( ph  ->  ( .s `  P
)  =  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) ) )
14 eqidd 2424 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
15 eqid 2423 . . . 4  |-  (TopSet `  P )  =  (TopSet `  P )
161, 4, 5, 6, 3, 15prdstset 15357 . . 3  |-  ( ph  ->  (TopSet `  P )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
17 eqid 2423 . . . 4  |-  ( le
`  P )  =  ( le `  P
)
181, 4, 5, 6, 3, 17prdsle 15353 . . 3  |-  ( ph  ->  ( le `  P
)  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
19 eqid 2423 . . . 4  |-  ( dist `  P )  =  (
dist `  P )
201, 4, 5, 6, 3, 19prdsds 15355 . . 3  |-  ( ph  ->  ( dist `  P
)  =  ( f  e.  B ,  g  e.  B  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
21 eqidd 2424 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
22 eqidd 2424 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
231, 2, 3, 7, 9, 11, 13, 14, 16, 18, 20, 21, 22, 4, 5prdsval 15346 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
24 prdshom.h . 2  |-  H  =  ( Hom  `  P
)
25 homid 15306 . 2  |-  Hom  = Slot  ( Hom  `  ndx )
26 ovssunirn 6332 . . . . . . . . . . 11  |-  ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( Hom  `  ( R `  x )
)
2725strfvss 15132 . . . . . . . . . . . . 13  |-  ( Hom  `  ( R `  x
) )  C_  U. ran  ( R `  x )
28 fvssunirn 5902 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
29 rnss 5080 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
30 uniss 4238 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
3128, 29, 30mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
3227, 31sstri 3474 . . . . . . . . . . . 12  |-  ( Hom  `  ( R `  x
) )  C_  U. ran  U.
ran  R
33 rnss 5080 . . . . . . . . . . . 12  |-  ( ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  R  ->  ran  ( Hom  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R )
34 uniss 4238 . . . . . . . . . . . 12  |-  ( ran  ( Hom  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  U. ran  R )
3532, 33, 34mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  U. ran  R
3626, 35sstri 3474 . . . . . . . . . 10  |-  ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
3736rgenw 2787 . . . . . . . . 9  |-  A. x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R
38 ss2ixp 7541 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R  ->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) 
C_  X_ x  e.  I  U. ran  U. ran  U. ran  R )
3937, 38ax-mp 5 . . . . . . . 8  |-  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  C_  X_ x  e.  I  U. ran  U. ran  U. ran  R
40 dmexg 6736 . . . . . . . . . . 11  |-  ( R  e.  W  ->  dom  R  e.  _V )
415, 40syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  R  e.  _V )
423, 41eqeltrrd 2512 . . . . . . . . 9  |-  ( ph  ->  I  e.  _V )
43 rnexg 6737 . . . . . . . . . . . 12  |-  ( R  e.  W  ->  ran  R  e.  _V )
44 uniexg 6600 . . . . . . . . . . . 12  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
455, 43, 443syl 18 . . . . . . . . . . 11  |-  ( ph  ->  U. ran  R  e. 
_V )
46 rnexg 6737 . . . . . . . . . . 11  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
47 uniexg 6600 . . . . . . . . . . 11  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4845, 46, 473syl 18 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
49 rnexg 6737 . . . . . . . . . 10  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
50 uniexg 6600 . . . . . . . . . 10  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
5148, 49, 503syl 18 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  U.
ran  R  e.  _V )
52 ixpconstg 7537 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  U.
ran  U. ran  U. ran  R  e.  _V )  ->  X_ x  e.  I  U. ran  U. ran  U. ran  R  =  ( U. ran  U.
ran  U. ran  R  ^m  I ) )
5342, 51, 52syl2anc 666 . . . . . . . 8  |-  ( ph  -> 
X_ x  e.  I  U. ran  U. ran  U. ran  R  =  ( U. ran  U. ran  U. ran  R  ^m  I ) )
5439, 53syl5sseq 3513 . . . . . . 7  |-  ( ph  -> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) 
C_  ( U. ran  U.
ran  U. ran  R  ^m  I ) )
55 ovex 6331 . . . . . . . 8  |-  ( U. ran  U. ran  U. ran  R  ^m  I )  e. 
_V
5655elpw2 4586 . . . . . . 7  |-  ( X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I )  <->  X_ x  e.  I  ( ( f `
 x ) ( Hom  `  ( R `  x ) ) ( g `  x ) )  C_  ( U. ran  U. ran  U. ran  R  ^m  I ) )
5754, 56sylibr 216 . . . . . 6  |-  ( ph  -> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) )  e.  ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
5857ralrimivw 2841 . . . . 5  |-  ( ph  ->  A. g  e.  B  X_ x  e.  I  ( ( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I ) )
5958ralrimivw 2841 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  X_ x  e.  I  ( ( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I ) )
60 eqid 2423 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) )  =  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )
6160fmpt2 6872 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  e.  ~P ( U. ran  U. ran  U.
ran  R  ^m  I )  <-> 
( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
6259, 61sylib 200 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
63 fvex 5889 . . . . . 6  |-  ( Base `  P )  e.  _V
646, 63eqeltri 2507 . . . . 5  |-  B  e. 
_V
6564, 64xpex 6607 . . . 4  |-  ( B  X.  B )  e. 
_V
6665a1i 11 . . 3  |-  ( ph  ->  ( B  X.  B
)  e.  _V )
6755pwex 4605 . . . 4  |-  ~P ( U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
6867a1i 11 . . 3  |-  ( ph  ->  ~P ( U. ran  U.
ran  U. ran  R  ^m  I )  e.  _V )
69 fex2 6760 . . 3  |-  ( ( ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I )  /\  ( B  X.  B )  e. 
_V  /\  ~P ( U. ran  U. ran  U. ran  R  ^m  I )  e.  _V )  -> 
( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
7062, 66, 68, 69syl3anc 1265 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
71 snsspr1 4147 . . . 4  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. }
72 ssun2 3631 . . . 4  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. }  C_  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
7371, 72sstri 3474 . . 3  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
74 ssun2 3631 . . 3  |-  ( {
<. (TopSet `  ndx ) ,  (TopSet `  P ) >. ,  <. ( le `  ndx ) ,  ( le
`  P ) >. ,  <. ( dist `  ndx ) ,  ( dist `  P ) >. }  u.  {
<. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) 
C_  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7573, 74sstri 3474 . 2  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( .r `  P
) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7623, 24, 25, 70, 75prdsvallem 15345 1  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1438    e. wcel 1869   A.wral 2776   _Vcvv 3082    u. cun 3435    C_ wss 3437   ~Pcpw 3980   {csn 3997   {cpr 3999   {ctp 4001   <.cop 4003   U.cuni 4217    |-> cmpt 4480    X. cxp 4849   dom cdm 4851   ran crn 4852   -->wf 5595   ` cfv 5599  (class class class)co 6303    |-> cmpt2 6305   1stc1st 6803   2ndc2nd 6804    ^m cmap 7478   X_cixp 7528   ndxcnx 15111   Basecbs 15114   +g cplusg 15183   .rcmulr 15184  Scalarcsca 15186   .scvsca 15187   .icip 15188  TopSetcts 15189   lecple 15190   distcds 15192   Hom chom 15194  compcco 15195    gsumg cgsu 15332   X_scprds 15337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-sup 7960  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-fz 11787  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-plusg 15196  df-mulr 15197  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-hom 15207  df-cco 15208  df-prds 15339
This theorem is referenced by:  prdsco  15359
  Copyright terms: Public domain W3C validator