MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdshom Structured version   Visualization version   Unicode version

Theorem prdshom 15413
Description: Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdshom.h  |-  H  =  ( Hom  `  P
)
Assertion
Ref Expression
prdshom  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    H( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdshom
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2461 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 15403 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqid 2461 . . . 4  |-  ( +g  `  P )  =  ( +g  `  P )
91, 4, 5, 6, 3, 8prdsplusg 15404 . . 3  |-  ( ph  ->  ( +g  `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
10 eqid 2461 . . . 4  |-  ( .r
`  P )  =  ( .r `  P
)
111, 4, 5, 6, 3, 10prdsmulr 15405 . . 3  |-  ( ph  ->  ( .r `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
12 eqid 2461 . . . 4  |-  ( .s
`  P )  =  ( .s `  P
)
131, 4, 5, 6, 3, 2, 12prdsvsca 15406 . . 3  |-  ( ph  ->  ( .s `  P
)  =  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) ) )
14 eqidd 2462 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
15 eqid 2461 . . . 4  |-  (TopSet `  P )  =  (TopSet `  P )
161, 4, 5, 6, 3, 15prdstset 15412 . . 3  |-  ( ph  ->  (TopSet `  P )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
17 eqid 2461 . . . 4  |-  ( le
`  P )  =  ( le `  P
)
181, 4, 5, 6, 3, 17prdsle 15408 . . 3  |-  ( ph  ->  ( le `  P
)  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
19 eqid 2461 . . . 4  |-  ( dist `  P )  =  (
dist `  P )
201, 4, 5, 6, 3, 19prdsds 15410 . . 3  |-  ( ph  ->  ( dist `  P
)  =  ( f  e.  B ,  g  e.  B  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
21 eqidd 2462 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
22 eqidd 2462 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
231, 2, 3, 7, 9, 11, 13, 14, 16, 18, 20, 21, 22, 4, 5prdsval 15401 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
24 prdshom.h . 2  |-  H  =  ( Hom  `  P
)
25 homid 15361 . 2  |-  Hom  = Slot  ( Hom  `  ndx )
26 ovssunirn 6343 . . . . . . . . . . 11  |-  ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( Hom  `  ( R `  x )
)
2725strfvss 15187 . . . . . . . . . . . . 13  |-  ( Hom  `  ( R `  x
) )  C_  U. ran  ( R `  x )
28 fvssunirn 5910 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
29 rnss 5081 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
30 uniss 4232 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
3128, 29, 30mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
3227, 31sstri 3452 . . . . . . . . . . . 12  |-  ( Hom  `  ( R `  x
) )  C_  U. ran  U.
ran  R
33 rnss 5081 . . . . . . . . . . . 12  |-  ( ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  R  ->  ran  ( Hom  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R )
34 uniss 4232 . . . . . . . . . . . 12  |-  ( ran  ( Hom  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  U. ran  R )
3532, 33, 34mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( Hom  `  ( R `  x ) )  C_  U.
ran  U. ran  U. ran  R
3626, 35sstri 3452 . . . . . . . . . 10  |-  ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
3736rgenw 2760 . . . . . . . . 9  |-  A. x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R
38 ss2ixp 7560 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R  ->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) 
C_  X_ x  e.  I  U. ran  U. ran  U. ran  R )
3937, 38ax-mp 5 . . . . . . . 8  |-  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  C_  X_ x  e.  I  U. ran  U. ran  U. ran  R
40 dmexg 6750 . . . . . . . . . . 11  |-  ( R  e.  W  ->  dom  R  e.  _V )
415, 40syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  R  e.  _V )
423, 41eqeltrrd 2540 . . . . . . . . 9  |-  ( ph  ->  I  e.  _V )
43 rnexg 6751 . . . . . . . . . . . 12  |-  ( R  e.  W  ->  ran  R  e.  _V )
44 uniexg 6614 . . . . . . . . . . . 12  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
455, 43, 443syl 18 . . . . . . . . . . 11  |-  ( ph  ->  U. ran  R  e. 
_V )
46 rnexg 6751 . . . . . . . . . . 11  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
47 uniexg 6614 . . . . . . . . . . 11  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4845, 46, 473syl 18 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
49 rnexg 6751 . . . . . . . . . 10  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
50 uniexg 6614 . . . . . . . . . 10  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
5148, 49, 503syl 18 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  U.
ran  R  e.  _V )
52 ixpconstg 7556 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  U.
ran  U. ran  U. ran  R  e.  _V )  ->  X_ x  e.  I  U. ran  U. ran  U. ran  R  =  ( U. ran  U.
ran  U. ran  R  ^m  I ) )
5342, 51, 52syl2anc 671 . . . . . . . 8  |-  ( ph  -> 
X_ x  e.  I  U. ran  U. ran  U. ran  R  =  ( U. ran  U. ran  U. ran  R  ^m  I ) )
5439, 53syl5sseq 3491 . . . . . . 7  |-  ( ph  -> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) 
C_  ( U. ran  U.
ran  U. ran  R  ^m  I ) )
55 ovex 6342 . . . . . . . 8  |-  ( U. ran  U. ran  U. ran  R  ^m  I )  e. 
_V
5655elpw2 4580 . . . . . . 7  |-  ( X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I )  <->  X_ x  e.  I  ( ( f `
 x ) ( Hom  `  ( R `  x ) ) ( g `  x ) )  C_  ( U. ran  U. ran  U. ran  R  ^m  I ) )
5754, 56sylibr 217 . . . . . 6  |-  ( ph  -> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) )  e.  ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
5857ralrimivw 2814 . . . . 5  |-  ( ph  ->  A. g  e.  B  X_ x  e.  I  ( ( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I ) )
5958ralrimivw 2814 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  X_ x  e.  I  ( ( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  R  ^m  I ) )
60 eqid 2461 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) )  =  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )
6160fmpt2 6886 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) )  e.  ~P ( U. ran  U. ran  U.
ran  R  ^m  I )  <-> 
( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
6259, 61sylib 201 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I ) )
63 fvex 5897 . . . . . 6  |-  ( Base `  P )  e.  _V
646, 63eqeltri 2535 . . . . 5  |-  B  e. 
_V
6564, 64xpex 6621 . . . 4  |-  ( B  X.  B )  e. 
_V
6665a1i 11 . . 3  |-  ( ph  ->  ( B  X.  B
)  e.  _V )
6755pwex 4599 . . . 4  |-  ~P ( U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
6867a1i 11 . . 3  |-  ( ph  ->  ~P ( U. ran  U.
ran  U. ran  R  ^m  I )  e.  _V )
69 fex2 6774 . . 3  |-  ( ( ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) : ( B  X.  B ) --> ~P ( U. ran  U. ran  U. ran  R  ^m  I )  /\  ( B  X.  B )  e. 
_V  /\  ~P ( U. ran  U. ran  U. ran  R  ^m  I )  e.  _V )  -> 
( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
7062, 66, 68, 69syl3anc 1276 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
71 snsspr1 4133 . . . 4  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. }
72 ssun2 3609 . . . 4  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. }  C_  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
7371, 72sstri 3452 . . 3  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
74 ssun2 3609 . . 3  |-  ( {
<. (TopSet `  ndx ) ,  (TopSet `  P ) >. ,  <. ( le `  ndx ) ,  ( le
`  P ) >. ,  <. ( dist `  ndx ) ,  ( dist `  P ) >. }  u.  {
<. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) 
C_  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7573, 74sstri 3452 . 2  |-  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( .r `  P
) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( .s `  P
) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  (TopSet `  P
) >. ,  <. ( le `  ndx ) ,  ( le `  P
) >. ,  <. ( dist `  ndx ) ,  ( dist `  P
) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7623, 24, 25, 70, 75prdsvallem 15400 1  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1454    e. wcel 1897   A.wral 2748   _Vcvv 3056    u. cun 3413    C_ wss 3415   ~Pcpw 3962   {csn 3979   {cpr 3981   {ctp 3983   <.cop 3985   U.cuni 4211    |-> cmpt 4474    X. cxp 4850   dom cdm 4852   ran crn 4853   -->wf 5596   ` cfv 5600  (class class class)co 6314    |-> cmpt2 6316   1stc1st 6817   2ndc2nd 6818    ^m cmap 7497   X_cixp 7547   ndxcnx 15166   Basecbs 15169   +g cplusg 15238   .rcmulr 15239  Scalarcsca 15241   .scvsca 15242   .icip 15243  TopSetcts 15244   lecple 15245   distcds 15247   Hom chom 15249  compcco 15250    gsumg cgsu 15387   X_scprds 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-oadd 7211  df-er 7388  df-map 7499  df-ixp 7548  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-sup 7981  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-nn 10637  df-2 10695  df-3 10696  df-4 10697  df-5 10698  df-6 10699  df-7 10700  df-8 10701  df-9 10702  df-10 10703  df-n0 10898  df-z 10966  df-dec 11080  df-uz 11188  df-fz 11813  df-struct 15171  df-ndx 15172  df-slot 15173  df-base 15174  df-plusg 15251  df-mulr 15252  df-sca 15254  df-vsca 15255  df-ip 15256  df-tset 15257  df-ple 15258  df-ds 15260  df-hom 15262  df-cco 15263  df-prds 15394
This theorem is referenced by:  prdsco  15414
  Copyright terms: Public domain W3C validator