MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Structured version   Unicode version

Theorem prdsgsum 17205
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
prdsgsum.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsgsum.b  |-  B  =  ( Base `  R
)
prdsgsum.z  |-  .0.  =  ( 0g `  Y )
prdsgsum.i  |-  ( ph  ->  I  e.  V )
prdsgsum.j  |-  ( ph  ->  J  e.  W )
prdsgsum.s  |-  ( ph  ->  S  e.  X )
prdsgsum.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e. CMnd )
prdsgsum.f  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  B )
prdsgsum.w  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
Assertion
Ref Expression
prdsgsum  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Distinct variable groups:    x, y, I    x, J, y    x, Y, y    ph, x, y
Allowed substitution hints:    B( x, y)    R( x, y)    S( x, y)    U( x, y)    V( x, y)    W( x, y)    X( x, y)    .0. ( x, y)

Proof of Theorem prdsgsum
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 eqid 2454 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
3 prdsgsum.s . . . 4  |-  ( ph  ->  S  e.  X )
4 prdsgsum.i . . . 4  |-  ( ph  ->  I  e.  V )
5 prdsgsum.r . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  R  e. CMnd )
6 eqid 2454 . . . . . 6  |-  ( x  e.  I  |->  R )  =  ( x  e.  I  |->  R )
75, 6fmptd 6031 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  R ) : I -->CMnd )
8 ffn 5713 . . . . 5  |-  ( ( x  e.  I  |->  R ) : I -->CMnd  ->  ( x  e.  I  |->  R )  Fn  I )
97, 8syl 16 . . . 4  |-  ( ph  ->  ( x  e.  I  |->  R )  Fn  I
)
10 prdsgsum.z . . . . 5  |-  .0.  =  ( 0g `  Y )
111, 4, 3, 7prdscmnd 17069 . . . . 5  |-  ( ph  ->  Y  e. CMnd )
12 prdsgsum.j . . . . 5  |-  ( ph  ->  J  e.  W )
13 prdsgsum.f . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  B )
1413anassrs 646 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  U  e.  B )
1514an32s 802 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  J )  /\  x  e.  I )  ->  U  e.  B )
1615ralrimiva 2868 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  A. x  e.  I  U  e.  B )
175ralrimiva 2868 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I  R  e. CMnd )
18 prdsgsum.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
191, 2, 3, 4, 17, 18prdsbasmpt2 14974 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  I  |->  U )  e.  ( Base `  Y
)  <->  A. x  e.  I  U  e.  B )
)
2019adantr 463 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  (
( x  e.  I  |->  U )  e.  (
Base `  Y )  <->  A. x  e.  I  U  e.  B ) )
2116, 20mpbird 232 . . . . . 6  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  ( Base `  Y ) )
22 eqid 2454 . . . . . 6  |-  ( y  e.  J  |->  ( x  e.  I  |->  U ) )  =  ( y  e.  J  |->  ( x  e.  I  |->  U ) )
2321, 22fmptd 6031 . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) : J --> ( Base `  Y
) )
24 prdsgsum.w . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
252, 10, 11, 12, 23, 24gsumcl 17125 . . . 4  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  e.  ( Base `  Y
) )
261, 2, 3, 4, 9, 25prdsbasfn 14963 . . 3  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  Fn  I )
27 nfcv 2616 . . . . 5  |-  F/_ x Y
28 nfcv 2616 . . . . 5  |-  F/_ x  gsumg
29 nfcv 2616 . . . . . 6  |-  F/_ x J
30 nfmpt1 4528 . . . . . 6  |-  F/_ x
( x  e.  I  |->  U )
3129, 30nfmpt 4527 . . . . 5  |-  F/_ x
( y  e.  J  |->  ( x  e.  I  |->  U ) )
3227, 28, 31nfov 6296 . . . 4  |-  F/_ x
( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )
3332dffn5f 5903 . . 3  |-  ( ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  Fn  I  <->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `  x
) ) )
3426, 33sylib 196 . 2  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) ) )
35 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
3635adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  x  e.  I )
37 eqid 2454 . . . . . . . 8  |-  ( x  e.  I  |->  U )  =  ( x  e.  I  |->  U )
3837fvmpt2 5939 . . . . . . 7  |-  ( ( x  e.  I  /\  U  e.  B )  ->  ( ( x  e.  I  |->  U ) `  x )  =  U )
3936, 14, 38syl2anc 659 . . . . . 6  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
( x  e.  I  |->  U ) `  x
)  =  U )
4039mpteq2dva 4525 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  ( ( x  e.  I  |->  U ) `  x
) )  =  ( y  e.  J  |->  U ) )
4140oveq2d 6286 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( x  e.  I  |->  U ) `  x ) ) )  =  ( R  gsumg  ( y  e.  J  |->  U ) ) )
4211adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  Y  e. CMnd )
43 cmnmnd 17015 . . . . . 6  |-  ( R  e. CMnd  ->  R  e.  Mnd )
445, 43syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Mnd )
4512adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  J  e.  W )
464adantr 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  V )
473adantr 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  X )
4844, 6fmptd 6031 . . . . . . . 8  |-  ( ph  ->  ( x  e.  I  |->  R ) : I --> Mnd )
4948adantr 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
x  e.  I  |->  R ) : I --> Mnd )
501, 2, 46, 47, 49, 35prdspjmhm 16200 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
a  e.  ( Base `  Y )  |->  ( a `
 x ) )  e.  ( Y MndHom  (
( x  e.  I  |->  R ) `  x
) ) )
516fvmpt2 5939 . . . . . . . 8  |-  ( ( x  e.  I  /\  R  e. CMnd )  ->  ( ( x  e.  I  |->  R ) `  x
)  =  R )
5235, 5, 51syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( x  e.  I  |->  R ) `  x
)  =  R )
5352oveq2d 6286 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( Y MndHom  ( ( x  e.  I  |->  R ) `  x ) )  =  ( Y MndHom  R ) )
5450, 53eleqtrd 2544 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
a  e.  ( Base `  Y )  |->  ( a `
 x ) )  e.  ( Y MndHom  R
) )
5521adantlr 712 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  ( Base `  Y ) )
5624adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
57 fveq1 5847 . . . . 5  |-  ( a  =  ( x  e.  I  |->  U )  -> 
( a `  x
)  =  ( ( x  e.  I  |->  U ) `  x ) )
58 fveq1 5847 . . . . 5  |-  ( a  =  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  ->  (
a `  x )  =  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) )
592, 10, 42, 44, 45, 54, 55, 56, 57, 58gsummhm2 17162 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( x  e.  I  |->  U ) `  x ) ) )  =  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) )
6041, 59eqtr3d 2497 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  U ) )  =  ( ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `  x
) )
6160mpteq2dva 4525 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) )  =  ( x  e.  I  |->  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) ) )
6234, 61eqtr4d 2498 1  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   class class class wbr 4439    |-> cmpt 4497    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   finSupp cfsupp 7821   Basecbs 14719   0gc0g 14932    gsumg cgsu 14933   X_scprds 14938   Mndcmnd 16121   MndHom cmhm 16166  CMndccmn 17000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12093  df-hash 12391  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-plusg 14800  df-mulr 14801  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-hom 14811  df-cco 14812  df-0g 14934  df-gsum 14935  df-prds 14940  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-mhm 16168  df-cntz 16557  df-cmn 17002
This theorem is referenced by:  pwsgsum  17207
  Copyright terms: Public domain W3C validator