MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval2 Structured version   Unicode version

Theorem prdsdsval2 15318
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsbasmpt2.b  |-  B  =  ( Base `  Y
)
prdsbasmpt2.s  |-  ( ph  ->  S  e.  V )
prdsbasmpt2.i  |-  ( ph  ->  I  e.  W )
prdsbasmpt2.r  |-  ( ph  ->  A. x  e.  I  R  e.  X )
prdsdsval2.f  |-  ( ph  ->  F  e.  B )
prdsdsval2.g  |-  ( ph  ->  G  e.  B )
prdsdsval2.e  |-  E  =  ( dist `  R
)
prdsdsval2.d  |-  D  =  ( dist `  Y
)
Assertion
Ref Expression
prdsdsval2  |-  ( ph  ->  ( F D G )  =  sup (
( ran  ( x  e.  I  |->  ( ( F `  x ) E ( G `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
Distinct variable groups:    x, F    x, G    x, I
Allowed substitution hints:    ph( x)    B( x)    D( x)    R( x)    S( x)    E( x)    V( x)    W( x)    X( x)    Y( x)

Proof of Theorem prdsdsval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . 3  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 prdsbasmpt2.b . . 3  |-  B  =  ( Base `  Y
)
3 prdsbasmpt2.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdsbasmpt2.i . . 3  |-  ( ph  ->  I  e.  W )
5 prdsbasmpt2.r . . . 4  |-  ( ph  ->  A. x  e.  I  R  e.  X )
6 eqid 2422 . . . . 5  |-  ( x  e.  I  |->  R )  =  ( x  e.  I  |->  R )
76fnmpt 5658 . . . 4  |-  ( A. x  e.  I  R  e.  X  ->  ( x  e.  I  |->  R )  Fn  I )
85, 7syl 17 . . 3  |-  ( ph  ->  ( x  e.  I  |->  R )  Fn  I
)
9 prdsdsval2.f . . 3  |-  ( ph  ->  F  e.  B )
10 prdsdsval2.g . . 3  |-  ( ph  ->  G  e.  B )
11 prdsdsval2.d . . 3  |-  D  =  ( dist `  Y
)
121, 2, 3, 4, 8, 9, 10, 11prdsdsval 15312 . 2  |-  ( ph  ->  ( F D G )  =  sup (
( ran  ( y  e.  I  |->  ( ( F `  y ) ( dist `  (
( x  e.  I  |->  R ) `  y
) ) ( G `
 y ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
13 nfcv 2563 . . . . . . . 8  |-  F/_ x
( F `  y
)
14 nfcv 2563 . . . . . . . . 9  |-  F/_ x dist
15 nffvmpt1 5826 . . . . . . . . 9  |-  F/_ x
( ( x  e.  I  |->  R ) `  y )
1614, 15nffv 5825 . . . . . . . 8  |-  F/_ x
( dist `  ( (
x  e.  I  |->  R ) `  y ) )
17 nfcv 2563 . . . . . . . 8  |-  F/_ x
( G `  y
)
1813, 16, 17nfov 6268 . . . . . . 7  |-  F/_ x
( ( F `  y ) ( dist `  ( ( x  e.  I  |->  R ) `  y ) ) ( G `  y ) )
19 nfcv 2563 . . . . . . 7  |-  F/_ y
( ( F `  x ) ( dist `  ( ( x  e.  I  |->  R ) `  x ) ) ( G `  x ) )
20 fveq2 5818 . . . . . . . . 9  |-  ( y  =  x  ->  (
( x  e.  I  |->  R ) `  y
)  =  ( ( x  e.  I  |->  R ) `  x ) )
2120fveq2d 5822 . . . . . . . 8  |-  ( y  =  x  ->  ( dist `  ( ( x  e.  I  |->  R ) `
 y ) )  =  ( dist `  (
( x  e.  I  |->  R ) `  x
) ) )
22 fveq2 5818 . . . . . . . 8  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
23 fveq2 5818 . . . . . . . 8  |-  ( y  =  x  ->  ( G `  y )  =  ( G `  x ) )
2421, 22, 23oveq123d 6263 . . . . . . 7  |-  ( y  =  x  ->  (
( F `  y
) ( dist `  (
( x  e.  I  |->  R ) `  y
) ) ( G `
 y ) )  =  ( ( F `
 x ) (
dist `  ( (
x  e.  I  |->  R ) `  x ) ) ( G `  x ) ) )
2518, 19, 24cbvmpt 4451 . . . . . 6  |-  ( y  e.  I  |->  ( ( F `  y ) ( dist `  (
( x  e.  I  |->  R ) `  y
) ) ( G `
 y ) ) )  =  ( x  e.  I  |->  ( ( F `  x ) ( dist `  (
( x  e.  I  |->  R ) `  x
) ) ( G `
 x ) ) )
26 eqidd 2423 . . . . . . 7  |-  ( ph  ->  I  =  I )
276fvmpt2 5910 . . . . . . . . . . . 12  |-  ( ( x  e.  I  /\  R  e.  X )  ->  ( ( x  e.  I  |->  R ) `  x )  =  R )
2827fveq2d 5822 . . . . . . . . . . 11  |-  ( ( x  e.  I  /\  R  e.  X )  ->  ( dist `  (
( x  e.  I  |->  R ) `  x
) )  =  (
dist `  R )
)
29 prdsdsval2.e . . . . . . . . . . 11  |-  E  =  ( dist `  R
)
3028, 29syl6eqr 2474 . . . . . . . . . 10  |-  ( ( x  e.  I  /\  R  e.  X )  ->  ( dist `  (
( x  e.  I  |->  R ) `  x
) )  =  E )
3130oveqd 6259 . . . . . . . . 9  |-  ( ( x  e.  I  /\  R  e.  X )  ->  ( ( F `  x ) ( dist `  ( ( x  e.  I  |->  R ) `  x ) ) ( G `  x ) )  =  ( ( F `  x ) E ( G `  x ) ) )
3231ralimiaa 2751 . . . . . . . 8  |-  ( A. x  e.  I  R  e.  X  ->  A. x  e.  I  ( ( F `  x )
( dist `  ( (
x  e.  I  |->  R ) `  x ) ) ( G `  x ) )  =  ( ( F `  x ) E ( G `  x ) ) )
335, 32syl 17 . . . . . . 7  |-  ( ph  ->  A. x  e.  I 
( ( F `  x ) ( dist `  ( ( x  e.  I  |->  R ) `  x ) ) ( G `  x ) )  =  ( ( F `  x ) E ( G `  x ) ) )
34 mpteq12 4439 . . . . . . 7  |-  ( ( I  =  I  /\  A. x  e.  I  ( ( F `  x
) ( dist `  (
( x  e.  I  |->  R ) `  x
) ) ( G `
 x ) )  =  ( ( F `
 x ) E ( G `  x
) ) )  -> 
( x  e.  I  |->  ( ( F `  x ) ( dist `  ( ( x  e.  I  |->  R ) `  x ) ) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
) E ( G `
 x ) ) ) )
3526, 33, 34syl2anc 665 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( ( F `  x ) ( dist `  ( ( x  e.  I  |->  R ) `  x ) ) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
) E ( G `
 x ) ) ) )
3625, 35syl5eq 2468 . . . . 5  |-  ( ph  ->  ( y  e.  I  |->  ( ( F `  y ) ( dist `  ( ( x  e.  I  |->  R ) `  y ) ) ( G `  y ) ) )  =  ( x  e.  I  |->  ( ( F `  x
) E ( G `
 x ) ) ) )
3736rneqd 5017 . . . 4  |-  ( ph  ->  ran  ( y  e.  I  |->  ( ( F `
 y ) (
dist `  ( (
x  e.  I  |->  R ) `  y ) ) ( G `  y ) ) )  =  ran  ( x  e.  I  |->  ( ( F `  x ) E ( G `  x ) ) ) )
3837uneq1d 3555 . . 3  |-  ( ph  ->  ( ran  ( y  e.  I  |->  ( ( F `  y ) ( dist `  (
( x  e.  I  |->  R ) `  y
) ) ( G `
 y ) ) )  u.  { 0 } )  =  ( ran  ( x  e.  I  |->  ( ( F `
 x ) E ( G `  x
) ) )  u. 
{ 0 } ) )
3938supeq1d 7906 . 2  |-  ( ph  ->  sup ( ( ran  ( y  e.  I  |->  ( ( F `  y ) ( dist `  ( ( x  e.  I  |->  R ) `  y ) ) ( G `  y ) ) )  u.  {
0 } ) , 
RR* ,  <  )  =  sup ( ( ran  ( x  e.  I  |->  ( ( F `  x ) E ( G `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
4012, 39eqtrd 2456 1  |-  ( ph  ->  ( F D G )  =  sup (
( ran  ( x  e.  I  |->  ( ( F `  x ) E ( G `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2708    u. cun 3370   {csn 3934    |-> cmpt 4418   ran crn 4790    Fn wfn 5532   ` cfv 5537  (class class class)co 6242   supcsup 7900   0cc0 9483   RR*cxr 9618    < clt 9619   Basecbs 15057   distcds 15135   X_scprds 15280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-rep 4472  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rmo 2716  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-int 4192  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-1st 6744  df-2nd 6745  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7471  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9806  df-neg 9807  df-nn 10554  df-2 10612  df-3 10613  df-4 10614  df-5 10615  df-6 10616  df-7 10617  df-8 10618  df-9 10619  df-10 10620  df-n0 10814  df-z 10882  df-dec 10996  df-uz 11104  df-fz 11729  df-struct 15059  df-ndx 15060  df-slot 15061  df-base 15062  df-plusg 15139  df-mulr 15140  df-sca 15142  df-vsca 15143  df-ip 15144  df-tset 15145  df-ple 15146  df-ds 15148  df-hom 15150  df-cco 15151  df-prds 15282
This theorem is referenced by:  prdsdsval3  15319  ressprdsds  21321
  Copyright terms: Public domain W3C validator