Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd2 Structured version   Unicode version

Theorem prdsbnd2 29881
Description: If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y  |-  Y  =  ( S X_s R )
prdsbnd.b  |-  B  =  ( Base `  Y
)
prdsbnd.v  |-  V  =  ( Base `  ( R `  x )
)
prdsbnd.e  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
prdsbnd.d  |-  D  =  ( dist `  Y
)
prdsbnd.s  |-  ( ph  ->  S  e.  W )
prdsbnd.i  |-  ( ph  ->  I  e.  Fin )
prdsbnd.r  |-  ( ph  ->  R  Fn  I )
prdsbnd2.c  |-  C  =  ( D  |`  ( A  X.  A ) )
prdsbnd2.e  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
prdsbnd2.m  |-  ( (
ph  /\  x  e.  I )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
Assertion
Ref Expression
prdsbnd2  |-  ( ph  ->  ( C  e.  (
TotBnd `  A )  <->  C  e.  ( Bnd `  A ) ) )
Distinct variable groups:    y, D    x, y, R    x, B, y    y, E    ph, x, y   
x, I, y    x, S    y, V    x, Y
Allowed substitution hints:    A( x, y)    C( x, y)    D( x)    S( y)    E( x)    V( x)    W( x, y)    Y( y)

Proof of Theorem prdsbnd2
Dummy variables  r 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 29875 . 2  |-  ( C  e.  ( TotBnd `  A
)  ->  C  e.  ( Bnd `  A ) )
2 bndmet 29867 . . . . 5  |-  ( C  e.  ( Bnd `  A
)  ->  C  e.  ( Met `  A ) )
3 0totbnd 29859 . . . . 5  |-  ( A  =  (/)  ->  ( C  e.  ( TotBnd `  A
)  <->  C  e.  ( Met `  A ) ) )
42, 3syl5ibr 221 . . . 4  |-  ( A  =  (/)  ->  ( C  e.  ( Bnd `  A
)  ->  C  e.  ( TotBnd `  A )
) )
54a1i 11 . . 3  |-  ( ph  ->  ( A  =  (/)  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  (
TotBnd `  A ) ) ) )
6 n0 3787 . . . 4  |-  ( A  =/=  (/)  <->  E. a  a  e.  A )
7 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  C  e.  ( Bnd `  A ) )
8 eqid 2460 . . . . . . . . . . . 12  |-  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
9 eqid 2460 . . . . . . . . . . . 12  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
10 prdsbnd.v . . . . . . . . . . . 12  |-  V  =  ( Base `  ( R `  x )
)
11 prdsbnd.e . . . . . . . . . . . 12  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
12 eqid 2460 . . . . . . . . . . . 12  |-  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
13 prdsbnd.s . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  W )
14 prdsbnd.i . . . . . . . . . . . 12  |-  ( ph  ->  I  e.  Fin )
15 fvex 5867 . . . . . . . . . . . . 13  |-  ( R `
 x )  e. 
_V
1615a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
17 prdsbnd2.e . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
188, 9, 10, 11, 12, 13, 14, 16, 17prdsmet 20601 . . . . . . . . . . 11  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) )
19 prdsbnd.d . . . . . . . . . . . 12  |-  D  =  ( dist `  Y
)
20 prdsbnd.y . . . . . . . . . . . . . 14  |-  Y  =  ( S X_s R )
21 prdsbnd.r . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  Fn  I )
22 dffn5 5904 . . . . . . . . . . . . . . . 16  |-  ( R  Fn  I  <->  R  =  ( x  e.  I  |->  ( R `  x
) ) )
2321, 22sylib 196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  =  ( x  e.  I  |->  ( R `
 x ) ) )
2423oveq2d 6291 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S X_s R )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2520, 24syl5eq 2513 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2625fveq2d 5861 . . . . . . . . . . . 12  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2719, 26syl5eq 2513 . . . . . . . . . . 11  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
28 prdsbnd.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  Y
)
2925fveq2d 5861 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
3028, 29syl5eq 2513 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
3130fveq2d 5861 . . . . . . . . . . 11  |-  ( ph  ->  ( Met `  B
)  =  ( Met `  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) ) )
3218, 27, 313eltr4d 2563 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( Met `  B ) )
3332adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  D  e.  ( Met `  B ) )
34 simpr 461 . . . . . . . . . . 11  |-  ( ( a  e.  A  /\  C  e.  ( Bnd `  A ) )  ->  C  e.  ( Bnd `  A ) )
35 prdsbnd2.c . . . . . . . . . . . 12  |-  C  =  ( D  |`  ( A  X.  A ) )
3635bnd2lem 29877 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  B )  /\  C  e.  ( Bnd `  A
) )  ->  A  C_  B )
3732, 34, 36syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  A  C_  B )
38 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
a  e.  A )
3937, 38sseldd 3498 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
a  e.  B )
4035ssbnd 29874 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  B )  /\  a  e.  B )  ->  ( C  e.  ( Bnd `  A )  <->  E. r  e.  RR  A  C_  (
a ( ball `  D
) r ) ) )
4133, 39, 40syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
( C  e.  ( Bnd `  A )  <->  E. r  e.  RR  A  C_  ( a (
ball `  D )
r ) ) )
427, 41mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  E. r  e.  RR  A  C_  ( a (
ball `  D )
r ) )
43 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  A  C_  ( a ( ball `  D ) r ) )
44 xpss12 5099 . . . . . . . . . . 11  |-  ( ( A  C_  ( a
( ball `  D )
r )  /\  A  C_  ( a ( ball `  D ) r ) )  ->  ( A  X.  A )  C_  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )
4543, 43, 44syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  ( A  X.  A )  C_  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) )
46 resabs1 5293 . . . . . . . . . 10  |-  ( ( A  X.  A ) 
C_  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) )  ->  ( ( D  |`  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) ) )  |`  ( A  X.  A ) )  =  ( D  |`  ( A  X.  A
) ) )
4745, 46syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  |`  ( A  X.  A
) )  =  ( D  |`  ( A  X.  A ) ) )
4847, 35syl6eqr 2519 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  |`  ( A  X.  A
) )  =  C )
49 simpll 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  ph )
5039adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  a  e.  B )
51 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  r  e.  RR )
5238adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  a  e.  A )
5343, 52sseldd 3498 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  a  e.  ( a ( ball `  D ) r ) )
54 ne0i 3784 . . . . . . . . . . . . 13  |-  ( a  e.  ( a (
ball `  D )
r )  ->  (
a ( ball `  D
) r )  =/=  (/) )
5553, 54syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
a ( ball `  D
) r )  =/=  (/) )
5632ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  D  e.  ( Met `  B
) )
57 metxmet 20565 . . . . . . . . . . . . . 14  |-  ( D  e.  ( Met `  B
)  ->  D  e.  ( *Met `  B
) )
5856, 57syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  D  e.  ( *Met `  B ) )
5951rexrd 9632 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  r  e.  RR* )
60 xbln0 20645 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  B )  /\  a  e.  B  /\  r  e.  RR* )  ->  ( ( a (
ball `  D )
r )  =/=  (/)  <->  0  <  r ) )
6158, 50, 59, 60syl3anc 1223 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( a ( ball `  D ) r )  =/=  (/)  <->  0  <  r
) )
6255, 61mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  0  <  r )
6351, 62elrpd 11243 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  r  e.  RR+ )
64 eqid 2460 . . . . . . . . . . . 12  |-  ( S
X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) )  =  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) )
65 eqid 2460 . . . . . . . . . . . 12  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )
66 eqid 2460 . . . . . . . . . . . 12  |-  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )
67 eqid 2460 . . . . . . . . . . . 12  |-  ( (
dist `  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
) )  |`  (
( Base `  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  =  ( ( dist `  (
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )
68 eqid 2460 . . . . . . . . . . . 12  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )
6913adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  S  e.  W )
7014adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  I  e.  Fin )
71 ovex 6300 . . . . . . . . . . . . . 14  |-  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) )  e.  _V
72 fveq2 5857 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  ( R `  y )  =  ( R `  x ) )
7372fveq2d 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  ( dist `  ( R `  y ) )  =  ( dist `  ( R `  x )
) )
7472fveq2d 5861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  x  ->  ( Base `  ( R `  y ) )  =  ( Base `  ( R `  x )
) )
7574, 10syl6eqr 2519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  x  ->  ( Base `  ( R `  y ) )  =  V )
7675, 75xpeq12d 5017 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  (
( Base `  ( R `  y ) )  X.  ( Base `  ( R `  y )
) )  =  ( V  X.  V ) )
7773, 76reseq12d 5265 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  x  ->  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) )  =  ( ( dist `  ( R `  x
) )  |`  ( V  X.  V ) ) )
7877, 11syl6eqr 2519 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  x  ->  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) )  =  E )
7978fveq2d 5861 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  ( ball `  ( ( dist `  ( R `  y
) )  |`  (
( Base `  ( R `  y ) )  X.  ( Base `  ( R `  y )
) ) ) )  =  ( ball `  E
) )
80 fveq2 5857 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
a `  y )  =  ( a `  x ) )
81 eqidd 2461 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  r  =  r )
8279, 80, 81oveq123d 6296 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r )  =  ( ( a `  x ) ( ball `  E ) r ) )
8372, 82oveq12d 6293 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) )  =  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) ) )
8483cbvmptv 4531 . . . . . . . . . . . . . 14  |-  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  =  ( x  e.  I  |->  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) ) )
8571, 84fnmpti 5700 . . . . . . . . . . . . 13  |-  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  Fn  I
8685a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  Fn  I )
8717adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  E  e.  ( Met `  V ) )
88 metxmet 20565 . . . . . . . . . . . . . . . 16  |-  ( E  e.  ( Met `  V
)  ->  E  e.  ( *Met `  V
) )
8987, 88syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  E  e.  ( *Met `  V
) )
9016ralrimiva 2871 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. x  e.  I 
( R `  x
)  e.  _V )
9190adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( R `  x
)  e.  _V )
92 simprl 755 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
a  e.  B )
9330adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
9492, 93eleqtrd 2550 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
a  e.  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
958, 9, 69, 70, 91, 10, 94prdsbascl 14727 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( a `  x
)  e.  V )
9695r19.21bi 2826 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( a `  x )  e.  V
)
97 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  r  e.  RR+ )
9897rpred 11245 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  r  e.  RR )
99 blbnd 29873 . . . . . . . . . . . . . . 15  |-  ( ( E  e.  ( *Met `  V )  /\  ( a `  x )  e.  V  /\  r  e.  RR )  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) )
10089, 96, 98, 99syl3anc 1223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) )
101 ovex 6300 . . . . . . . . . . . . . . . 16  |-  ( ( a `  x ) ( ball `  E
) r )  e. 
_V
102 xpeq12 5011 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  =  ( ( a `  x ) ( ball `  E
) r )  /\  y  =  ( (
a `  x )
( ball `  E )
r ) )  -> 
( y  X.  y
)  =  ( ( ( a `  x
) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )
103102anidms 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
y  X.  y )  =  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )
104103reseq2d 5264 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  ( E  |`  ( y  X.  y ) )  =  ( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
105 fveq2 5857 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  ( TotBnd `
 y )  =  ( TotBnd `  ( (
a `  x )
( ball `  E )
r ) ) )
106104, 105eleq12d 2542 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
107 fveq2 5857 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  ( Bnd `  y )  =  ( Bnd `  (
( a `  x
) ( ball `  E
) r ) ) )
108104, 107eleq12d 2542 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( Bnd `  y )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
109106, 108bibi12d 321 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( ( E  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) )  <->  ( ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )
110109imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( ( ph  /\  x  e.  I )  ->  ( ( E  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )  <->  ( ( ph  /\  x  e.  I
)  ->  ( ( E  |`  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )  e.  (
TotBnd `  ( ( a `
 x ) (
ball `  E )
r ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) ) ) )
111 prdsbnd2.m . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  I )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
112101, 110, 111vtocl 3158 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  I )  ->  (
( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  e.  ( TotBnd `  (
( a `  x
) ( ball `  E
) r ) )  <-> 
( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  e.  ( Bnd `  (
( a `  x
) ( ball `  E
) r ) ) ) )
113112adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( E  |`  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )  e.  (
TotBnd `  ( ( a `
 x ) (
ball `  E )
r ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
114100, 113mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) ) )
115 eqid 2460 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  =  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )
11683, 115, 71fvmpt 5941 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  I  ->  (
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x )  =  ( ( R `
 x )s  ( ( a `  x ) ( ball `  E
) r ) ) )
117116adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
)  =  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) ) )
118117fveq2d 5861 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( dist `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( dist `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
119 eqid 2460 . . . . . . . . . . . . . . . . . 18  |-  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) )  =  ( ( R `
 x )s  ( ( a `  x ) ( ball `  E
) r ) )
120 eqid 2460 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  ( R `  x
) )  =  (
dist `  ( R `  x ) )
121119, 120ressds 14658 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a `  x
) ( ball `  E
) r )  e. 
_V  ->  ( dist `  ( R `  x )
)  =  ( dist `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
122101, 121ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( dist `  ( R `  x
) )  =  (
dist `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) )
123118, 122syl6eqr 2519 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( dist `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( dist `  ( R `  x
) ) )
124117fveq2d 5861 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( Base `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
125 rpxr 11216 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  RR+  ->  r  e. 
RR* )
126125ad2antll 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
127126adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  r  e.  RR* )
128 blssm 20649 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E  e.  ( *Met `  V )  /\  ( a `  x )  e.  V  /\  r  e.  RR* )  ->  ( ( a `  x ) ( ball `  E ) r ) 
C_  V )
12989, 96, 127, 128syl3anc 1223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
a `  x )
( ball `  E )
r )  C_  V
)
130119, 10ressbas2 14535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a `  x
) ( ball `  E
) r )  C_  V  ->  ( ( a `
 x ) (
ball `  E )
r )  =  (
Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
131129, 130syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
a `  x )
( ball `  E )
r )  =  (
Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
132124, 131eqtr4d 2504 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( ( a `  x ) ( ball `  E
) r ) )
133132, 132xpeq12d 5017 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) )  =  ( ( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )
134123, 133reseq12d 5265 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( dist `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  =  ( ( dist `  ( R `  x )
)  |`  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) ) )
13511reseq1i 5260 . . . . . . . . . . . . . . 15  |-  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  =  ( ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )
136 xpss12 5099 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a `  x ) ( ball `  E ) r ) 
C_  V  /\  (
( a `  x
) ( ball `  E
) r )  C_  V )  ->  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) )  C_  ( V  X.  V
) )
137129, 129, 136syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
( a `  x
) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) )  C_  ( V  X.  V ) )
138 resabs1 5293 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) )  C_  ( V  X.  V
)  ->  ( (
( dist `  ( R `  x ) )  |`  ( V  X.  V
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  =  ( ( dist `  ( R `  x
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
139137, 138syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
( dist `  ( R `  x ) )  |`  ( V  X.  V
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  =  ( ( dist `  ( R `  x
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
140135, 139syl5eq 2513 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  =  ( (
dist `  ( R `  x ) )  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) ) )
141134, 140eqtr4d 2504 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( dist `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  =  ( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
142132fveq2d 5861 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( TotBnd `  ( Base `  (
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) )  =  (
TotBnd `  ( ( a `
 x ) (
ball `  E )
r ) ) )
143114, 141, 1423eltr4d 2563 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( dist `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  e.  ( TotBnd `  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )
14464, 65, 66, 67, 68, 69, 70, 86, 143prdstotbnd 29880 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  e.  ( TotBnd `  ( Base `  ( S X_s (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) ) ) )
14525adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  Y  =  ( S X_s ( x  e.  I  |->  ( R `  x ) ) ) )
146 eqidd 2461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )  =  ( S
X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )
147 eqid 2460 . . . . . . . . . . . . 13  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )  =  (
Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )
14884oveq2i 6286 . . . . . . . . . . . . . 14  |-  ( S
X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) )  =  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
149148fveq2i 5860 . . . . . . . . . . . . 13  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )
15015a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( R `  x )  e.  _V )
151101a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
a `  x )
( ball `  E )
r )  e.  _V )
152145, 146, 147, 19, 149, 69, 69, 70, 150, 151ressprdsds 20602 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  =  ( D  |`  ( ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )  X.  ( Base `  ( S X_s (
x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) ) ) ) )
153131ixpeq2dva 7474 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  X_ x  e.  I  ( ( a `  x
) ( ball `  E
) r )  = 
X_ x  e.  I 
( Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
15472cbvmptv 4531 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  I  |->  ( R `
 y ) )  =  ( x  e.  I  |->  ( R `  x ) )
155154oveq2i 6286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
15625, 155syl6eqr 2519 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  Y  =  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) ) )
157156fveq2d 5861 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
15819, 157syl5eq 2513 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
159158fveq2d 5861 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ball `  D
)  =  ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) )
160159proplem3 14935 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( a ( ball `  D ) r )  =  ( a (
ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r ) )
161 eqid 2460 . . . . . . . . . . . . . . . . 17  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
162 eqid 2460 . . . . . . . . . . . . . . . . 17  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
163156fveq2d 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
16428, 163syl5eq 2513 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
165164adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
16692, 165eleqtrd 2550 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
a  e.  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
167 rpgt0 11220 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  RR+  ->  0  < 
r )
168167ad2antll 728 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
0  <  r )
169155, 161, 10, 11, 162, 69, 70, 150, 89, 166, 126, 168prdsbl 20722 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( a ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r )  = 
X_ x  e.  I 
( ( a `  x ) ( ball `  E ) r ) )
170160, 169eqtrd 2501 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( a ( ball `  D ) r )  =  X_ x  e.  I 
( ( a `  x ) ( ball `  E ) r ) )
171 eqid 2460 . . . . . . . . . . . . . . . 16  |-  ( S
X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )  =  ( S
X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
17271a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) )  e.  _V )
173172ralrimiva 2871 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) )  e. 
_V )
174 eqid 2460 . . . . . . . . . . . . . . . 16  |-  ( Base `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) )  =  ( Base `  (
( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) )
175171, 147, 69, 70, 173, 174prdsbas3 14725 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )  =  X_ x  e.  I 
( Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
176153, 170, 1753eqtr4rd 2512 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )  =  ( a (
ball `  D )
r ) )
177176, 176xpeq12d 5017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )  X.  ( Base `  ( S X_s (
x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) ) )  =  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) ) )
178177reseq2d 5264 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( D  |`  (
( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) ) ) )  =  ( D  |`  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) ) )
179152, 178eqtrd 2501 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  =  ( D  |`  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) ) )
180148fveq2i 5860 . . . . . . . . . . . . 13  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )
181180, 176syl5eq 2513 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  =  ( a (
ball `  D )
r ) )
182181fveq2d 5861 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( TotBnd `  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) ) )  =  ( TotBnd `  (
a ( ball `  D
) r ) ) )
183144, 179, 1823eltr3d 2562 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  e.  ( TotBnd `  (
a ( ball `  D
) r ) ) )
18449, 50, 63, 183syl12anc 1221 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  ( D  |`  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) ) )  e.  (
TotBnd `  ( a (
ball `  D )
r ) ) )
185 totbndss 29863 . . . . . . . . 9  |-  ( ( ( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  e.  ( TotBnd `  (
a ( ball `  D
) r ) )  /\  A  C_  (
a ( ball `  D
) r ) )  ->  ( ( D  |`  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) )  |`  ( A  X.  A ) )  e.  ( TotBnd `  A )
)
186184, 43, 185syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  |`  ( A  X.  A
) )  e.  (
TotBnd `  A ) )
18748, 186eqeltrrd 2549 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  C  e.  ( TotBnd `  A )
)
18842, 187rexlimddv 2952 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  C  e.  ( TotBnd `  A ) )
189188exp32 605 . . . . 5  |-  ( ph  ->  ( a  e.  A  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  (
TotBnd `  A ) ) ) )
190189exlimdv 1695 . . . 4  |-  ( ph  ->  ( E. a  a  e.  A  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  ( TotBnd `  A )
) ) )
1916, 190syl5bi 217 . . 3  |-  ( ph  ->  ( A  =/=  (/)  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  ( TotBnd `  A )
) ) )
1925, 191pm2.61dne 2777 . 2  |-  ( ph  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  (
TotBnd `  A ) ) )
1931, 192impbid2 204 1  |-  ( ph  ->  ( C  e.  (
TotBnd `  A )  <->  C  e.  ( Bnd `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   _Vcvv 3106    C_ wss 3469   (/)c0 3778   class class class wbr 4440    |-> cmpt 4498    X. cxp 4990    |` cres 4994    Fn wfn 5574   ` cfv 5579  (class class class)co 6275   X_cixp 7459   Fincfn 7506   RRcr 9480   0cc0 9481   RR*cxr 9616    < clt 9617   RR+crp 11209   Basecbs 14479   ↾s cress 14480   distcds 14553   X_scprds 14690   *Metcxmt 18167   Metcme 18168   ballcbl 18169   TotBndctotbnd 29852   Bndcbnd 29853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-ec 7303  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-icc 11525  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-hom 14568  df-cco 14569  df-prds 14692  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-totbnd 29854  df-bnd 29865
This theorem is referenced by:  cnpwstotbnd  29883
  Copyright terms: Public domain W3C validator