Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd Structured version   Unicode version

Theorem prdsbnd 30451
Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y  |-  Y  =  ( S X_s R )
prdsbnd.b  |-  B  =  ( Base `  Y
)
prdsbnd.v  |-  V  =  ( Base `  ( R `  x )
)
prdsbnd.e  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
prdsbnd.d  |-  D  =  ( dist `  Y
)
prdsbnd.s  |-  ( ph  ->  S  e.  W )
prdsbnd.i  |-  ( ph  ->  I  e.  Fin )
prdsbnd.r  |-  ( ph  ->  R  Fn  I )
prdsbnd.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Bnd `  V
) )
Assertion
Ref Expression
prdsbnd  |-  ( ph  ->  D  e.  ( Bnd `  B ) )
Distinct variable groups:    x, R    x, B    ph, x    x, I    x, S    x, Y
Allowed substitution hints:    D( x)    E( x)    V( x)    W( x)

Proof of Theorem prdsbnd
Dummy variables  z 
f  g  k  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . . . 4  |-  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
2 eqid 2457 . . . 4  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
3 prdsbnd.v . . . 4  |-  V  =  ( Base `  ( R `  x )
)
4 prdsbnd.e . . . 4  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
5 eqid 2457 . . . 4  |-  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
6 prdsbnd.s . . . 4  |-  ( ph  ->  S  e.  W )
7 prdsbnd.i . . . 4  |-  ( ph  ->  I  e.  Fin )
8 fvex 5882 . . . . 5  |-  ( R `
 x )  e. 
_V
98a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
10 prdsbnd.m . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Bnd `  V
) )
11 bndmet 30439 . . . . 5  |-  ( E  e.  ( Bnd `  V
)  ->  E  e.  ( Met `  V ) )
1210, 11syl 16 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
131, 2, 3, 4, 5, 6, 7, 9, 12prdsmet 20998 . . 3  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) )
14 prdsbnd.d . . . 4  |-  D  =  ( dist `  Y
)
15 prdsbnd.y . . . . . 6  |-  Y  =  ( S X_s R )
16 prdsbnd.r . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
17 dffn5 5918 . . . . . . . 8  |-  ( R  Fn  I  <->  R  =  ( x  e.  I  |->  ( R `  x
) ) )
1816, 17sylib 196 . . . . . . 7  |-  ( ph  ->  R  =  ( x  e.  I  |->  ( R `
 x ) ) )
1918oveq2d 6312 . . . . . 6  |-  ( ph  ->  ( S X_s R )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2015, 19syl5eq 2510 . . . . 5  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2120fveq2d 5876 . . . 4  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2214, 21syl5eq 2510 . . 3  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
23 prdsbnd.b . . . . 5  |-  B  =  ( Base `  Y
)
2420fveq2d 5876 . . . . 5  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2523, 24syl5eq 2510 . . . 4  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2625fveq2d 5876 . . 3  |-  ( ph  ->  ( Met `  B
)  =  ( Met `  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) ) )
2713, 22, 263eltr4d 2560 . 2  |-  ( ph  ->  D  e.  ( Met `  B ) )
28 isbnd3 30442 . . . . . . 7  |-  ( E  e.  ( Bnd `  V
)  <->  ( E  e.  ( Met `  V
)  /\  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w
) ) )
2928simprbi 464 . . . . . 6  |-  ( E  e.  ( Bnd `  V
)  ->  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w
) )
3010, 29syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w
) )
3130ralrimiva 2871 . . . 4  |-  ( ph  ->  A. x  e.  I  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w ) )
32 oveq2 6304 . . . . . 6  |-  ( w  =  ( k `  x )  ->  (
0 [,] w )  =  ( 0 [,] ( k `  x
) ) )
3332feq3d 5725 . . . . 5  |-  ( w  =  ( k `  x )  ->  ( E : ( V  X.  V ) --> ( 0 [,] w )  <->  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )
3433ac6sfi 7782 . . . 4  |-  ( ( I  e.  Fin  /\  A. x  e.  I  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w ) )  ->  E. k ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )
357, 31, 34syl2anc 661 . . 3  |-  ( ph  ->  E. k ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )
36 frn 5743 . . . . . . . 8  |-  ( k : I --> RR  ->  ran  k  C_  RR )
3736adantl 466 . . . . . . 7  |-  ( (
ph  /\  k :
I --> RR )  ->  ran  k  C_  RR )
38 0red 9614 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
3938snssd 4177 . . . . . . . 8  |-  ( ph  ->  { 0 }  C_  RR )
4039adantr 465 . . . . . . 7  |-  ( (
ph  /\  k :
I --> RR )  ->  { 0 }  C_  RR )
4137, 40unssd 3676 . . . . . 6  |-  ( (
ph  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  C_  RR )
42 ffn 5737 . . . . . . . . . 10  |-  ( k : I --> RR  ->  k  Fn  I )
43 dffn4 5807 . . . . . . . . . 10  |-  ( k  Fn  I  <->  k :
I -onto-> ran  k )
4442, 43sylib 196 . . . . . . . . 9  |-  ( k : I --> RR  ->  k : I -onto-> ran  k
)
45 fofi 7824 . . . . . . . . 9  |-  ( ( I  e.  Fin  /\  k : I -onto-> ran  k
)  ->  ran  k  e. 
Fin )
467, 44, 45syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k :
I --> RR )  ->  ran  k  e.  Fin )
47 snfi 7615 . . . . . . . 8  |-  { 0 }  e.  Fin
48 unfi 7805 . . . . . . . 8  |-  ( ( ran  k  e.  Fin  /\ 
{ 0 }  e.  Fin )  ->  ( ran  k  u.  { 0 } )  e.  Fin )
4946, 47, 48sylancl 662 . . . . . . 7  |-  ( (
ph  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  e. 
Fin )
50 ssun2 3664 . . . . . . . . 9  |-  { 0 }  C_  ( ran  k  u.  { 0 } )
51 c0ex 9607 . . . . . . . . . 10  |-  0  e.  _V
5251snid 4060 . . . . . . . . 9  |-  0  e.  { 0 }
5350, 52sselii 3496 . . . . . . . 8  |-  0  e.  ( ran  k  u. 
{ 0 } )
54 ne0i 3799 . . . . . . . 8  |-  ( 0  e.  ( ran  k  u.  { 0 } )  ->  ( ran  k  u.  { 0 } )  =/=  (/) )
5553, 54mp1i 12 . . . . . . 7  |-  ( (
ph  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  =/=  (/) )
56 ltso 9682 . . . . . . . 8  |-  <  Or  RR
57 fisupcl 7945 . . . . . . . 8  |-  ( (  <  Or  RR  /\  ( ( ran  k  u.  { 0 } )  e.  Fin  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  ( ran  k  u.  { 0 } )  C_  RR ) )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  ( ran  k  u.  { 0 } ) )
5856, 57mpan 670 . . . . . . 7  |-  ( ( ( ran  k  u. 
{ 0 } )  e.  Fin  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  ( ran  k  u.  { 0 } )  C_  RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  ( ran  k  u.  {
0 } ) )
5949, 55, 41, 58syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  k :
I --> RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  ( ran  k  u.  { 0 } ) )
6041, 59sseldd 3500 . . . . 5  |-  ( (
ph  /\  k :
I --> RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
6160adantrr 716 . . . 4  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
62 metf 20958 . . . . . . 7  |-  ( D  e.  ( Met `  B
)  ->  D :
( B  X.  B
) --> RR )
63 ffn 5737 . . . . . . 7  |-  ( D : ( B  X.  B ) --> RR  ->  D  Fn  ( B  X.  B ) )
6427, 62, 633syl 20 . . . . . 6  |-  ( ph  ->  D  Fn  ( B  X.  B ) )
6564adantr 465 . . . . 5  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  D  Fn  ( B  X.  B
) )
6627ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  D  e.  ( Met `  B ) )
67 simprl 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
6867adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  f  e.  B )
69 simprr 757 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
7069adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  g  e.  B )
71 metcl 20960 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  B )  /\  f  e.  B  /\  g  e.  B )  ->  (
f D g )  e.  RR )
7266, 68, 70, 71syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  e.  RR )
73 metge0 20973 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  B )  /\  f  e.  B  /\  g  e.  B )  ->  0  <_  ( f D g ) )
7466, 68, 70, 73syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  0  <_  ( f D g ) )
7522oveqdr 6320 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) g ) )
766adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  W )
777adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  Fin )
788a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
7978ralrimiva 2871 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( R `  x
)  e.  _V )
8025adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
8167, 80eleqtrd 2547 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
8269, 80eleqtrd 2547 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
831, 2, 76, 77, 79, 81, 82, 3, 4, 5prdsdsval3 14901 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) g )  =  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
8475, 83eqtrd 2498 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
8584adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
8612adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
871, 2, 76, 77, 79, 3, 81prdsbascl 14899 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( f `  x
)  e.  V )
8887r19.21bi 2826 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  e.  V )
891, 2, 76, 77, 79, 3, 82prdsbascl 14899 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( g `  x
)  e.  V )
9089r19.21bi 2826 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  e.  V )
91 metcl 20960 . . . . . . . . . . . . . . . . . 18  |-  ( ( E  e.  ( Met `  V )  /\  (
f `  x )  e.  V  /\  (
g `  x )  e.  V )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
9286, 88, 90, 91syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
9392ad2ant2r 746 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR )
94 ffvelrn 6030 . . . . . . . . . . . . . . . . 17  |-  ( ( k : I --> RR  /\  x  e.  I )  ->  ( k `  x
)  e.  RR )
9594ad2ant2lr 747 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  e.  RR )
9660adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
9796adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
98 simprr 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  E : ( V  X.  V ) --> ( 0 [,] (
k `  x )
) )
9988ad2ant2r 746 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( f `  x )  e.  V
)
10090ad2ant2r 746 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( g `  x )  e.  V
)
10198, 99, 100fovrnd 6446 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  ( 0 [,] ( k `
 x ) ) )
102 0re 9613 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
103 elicc2 11614 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  ( k `  x
)  e.  RR )  ->  ( ( ( f `  x ) E ( g `  x ) )  e.  ( 0 [,] (
k `  x )
)  <->  ( ( ( f `  x ) E ( g `  x ) )  e.  RR  /\  0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( k `  x
) ) ) )
104102, 95, 103sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( ( f `  x ) E ( g `  x ) )  e.  ( 0 [,] (
k `  x )
)  <->  ( ( ( f `  x ) E ( g `  x ) )  e.  RR  /\  0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( k `  x
) ) ) )
105101, 104mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( ( f `  x ) E ( g `  x ) )  e.  RR  /\  0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( k `  x
) ) )
106105simp3d 1010 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  <_  (
k `  x )
)
10741adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  C_  RR )
108107adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ran  k  u.  { 0 } ) 
C_  RR )
10953, 54mp1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ran  k  u.  { 0 } )  =/=  (/) )
110 fimaxre2 10511 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ran  k  u. 
{ 0 } ) 
C_  RR  /\  ( ran  k  u.  { 0 } )  e.  Fin )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
11141, 49, 110syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k :
I --> RR )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
112111adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
113112adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
114 ssun1 3663 . . . . . . . . . . . . . . . . . 18  |-  ran  k  C_  ( ran  k  u. 
{ 0 } )
11542ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  k  Fn  I
)
116 simprl 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  x  e.  I
)
117 fnfvelrn 6029 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  Fn  I  /\  x  e.  I )  ->  ( k `  x
)  e.  ran  k
)
118115, 116, 117syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  e.  ran  k )
119114, 118sseldi 3497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  e.  ( ran  k  u.  {
0 } ) )
120 suprub 10524 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ran  k  u.  { 0 } ) 
C_  RR  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( ran  k  u. 
{ 0 } ) w  <_  z )  /\  ( k `  x
)  e.  ( ran  k  u.  { 0 } ) )  -> 
( k `  x
)  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
)
121108, 109, 113, 119, 120syl31anc 1231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
12293, 95, 97, 106, 121letrd 9756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
123122expr 615 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  x  e.  I
)  ->  ( E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) )  -> 
( ( f `  x ) E ( g `  x ) )  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )
124123ralimdva 2865 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  -> 
( A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] (
k `  x )
)  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
125124impr 619 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
126 ovex 6324 . . . . . . . . . . . . . 14  |-  ( ( f `  x ) E ( g `  x ) )  e. 
_V
127126rgenw 2818 . . . . . . . . . . . . 13  |-  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e. 
_V
128 eqid 2457 . . . . . . . . . . . . . 14  |-  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )
129 breq1 4459 . . . . . . . . . . . . . 14  |-  ( w  =  ( ( f `
 x ) E ( g `  x
) )  ->  (
w  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  ( ( f `  x
) E ( g `
 x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
130128, 129ralrnmpt 6041 . . . . . . . . . . . . 13  |-  ( A. x  e.  I  (
( f `  x
) E ( g `
 x ) )  e.  _V  ->  ( A. w  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )
131127, 130ax-mp 5 . . . . . . . . . . . 12  |-  ( A. w  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) w  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. x  e.  I  ( ( f `  x
) E ( g `
 x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
132125, 131sylibr 212 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. w  e.  ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
13341ad2ant2r 746 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( ran  k  u.  { 0 } )  C_  RR )
13453, 54mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( ran  k  u.  { 0 } )  =/=  (/) )
135111ad2ant2r 746 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u. 
{ 0 } ) w  <_  z )
13653a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  0  e.  ( ran  k  u.  {
0 } ) )
137 suprub 10524 . . . . . . . . . . . . . 14  |-  ( ( ( ( ran  k  u.  { 0 } ) 
C_  RR  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( ran  k  u. 
{ 0 } ) w  <_  z )  /\  0  e.  ( ran  k  u.  { 0 } ) )  -> 
0  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
)
138133, 134, 135, 136, 137syl31anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  0  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
139 elsni 4057 . . . . . . . . . . . . . 14  |-  ( w  e.  { 0 }  ->  w  =  0 )
140139breq1d 4466 . . . . . . . . . . . . 13  |-  ( w  e.  { 0 }  ->  ( w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  0  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )
141138, 140syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( w  e.  { 0 }  ->  w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
142141ralrimiv 2869 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. w  e.  { 0 } w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
143 ralunb 3681 . . . . . . . . . . 11  |-  ( A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  ( A. w  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) w  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  /\  A. w  e.  {
0 } w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
144132, 142, 143sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
14592, 128fmptd 6056 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I --> RR )
146 frn 5743 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) ) : I --> RR  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
147145, 146syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
148 0red 9614 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
0  e.  RR )
149148snssd 4177 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  { 0 }  C_  RR )
150147, 149unssd 3676 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR )
151 ressxr 9654 . . . . . . . . . . . . 13  |-  RR  C_  RR*
152150, 151syl6ss 3511 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR* )
153152adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* )
15461adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
155154rexrd 9660 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR* )
156 supxrleub 11543 . . . . . . . . . . 11  |-  ( ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR*  /\  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR* )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
157153, 155, 156syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
158144, 157mpbird 232 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
15985, 158eqbrtrd 4476 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
160 elicc2 11614 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )  -> 
( ( f D g )  e.  ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
)  <->  ( ( f D g )  e.  RR  /\  0  <_ 
( f D g )  /\  ( f D g )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) ) )
161102, 154, 160sylancr 663 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( (
f D g )  e.  ( 0 [,]
sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )  <->  ( (
f D g )  e.  RR  /\  0  <_  ( f D g )  /\  ( f D g )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) ) )
16272, 74, 159, 161mpbir3and 1179 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
163162an32s 804 . . . . . 6  |-  ( ( ( ph  /\  (
k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )
) )
164163ralrimivva 2878 . . . . 5  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. f  e.  B  A. g  e.  B  ( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
165 ffnov 6405 . . . . 5  |-  ( D : ( B  X.  B ) --> ( 0 [,] sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )
)  <->  ( D  Fn  ( B  X.  B
)  /\  A. f  e.  B  A. g  e.  B  ( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) ) )
16665, 164, 165sylanbrc 664 . . . 4  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  D :
( B  X.  B
) --> ( 0 [,]
sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
167 oveq2 6304 . . . . . 6  |-  ( m  =  sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )  ->  ( 0 [,] m
)  =  ( 0 [,] sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )
) )
168167feq3d 5725 . . . . 5  |-  ( m  =  sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )  ->  ( D : ( B  X.  B ) --> ( 0 [,] m
)  <->  D : ( B  X.  B ) --> ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) ) )
169168rspcev 3210 . . . 4  |-  ( ( sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR  /\  D : ( B  X.  B ) --> ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m
) )
17061, 166, 169syl2anc 661 . . 3  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m
) )
17135, 170exlimddv 1727 . 2  |-  ( ph  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m ) )
172 isbnd3 30442 . 2  |-  ( D  e.  ( Bnd `  B
)  <->  ( D  e.  ( Met `  B
)  /\  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m
) ) )
17327, 171, 172sylanbrc 664 1  |-  ( ph  ->  D  e.  ( Bnd `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   _Vcvv 3109    u. cun 3469    C_ wss 3471   (/)c0 3793   {csn 4032   class class class wbr 4456    |-> cmpt 4515    Or wor 4808    X. cxp 5006   ran crn 5009    |` cres 5010    Fn wfn 5589   -->wf 5590   -onto->wfo 5592   ` cfv 5594  (class class class)co 6296   Fincfn 7535   supcsup 7918   RRcr 9508   0cc0 9509   RR*cxr 9644    < clt 9645    <_ cle 9646   [,]cicc 11557   Basecbs 14643   distcds 14720   X_scprds 14862   Metcme 18530   Bndcbnd 30425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-ec 7331  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-icc 11561  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-hom 14735  df-cco 14736  df-prds 14864  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-bnd 30437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator