MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Structured version   Unicode version

Theorem prdsbl 20069
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 20083) - for a counterexample the point  p in  RR ^ NN whose  n-th coordinate is  1  -  1  /  n is in  X_ n  e.  NN ball ( 0 ,  1 ) but is not in the  1-ball of the product (since  d ( 0 ,  p )  =  1).

The last assumption,  0  <  A, is needed only in the case  I  =  (/), when the right side evaluates to  { (/) } and the left evaluates to  (/) if  A  <_  0 and  {
(/) } if  0  <  A. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsbl.b  |-  B  =  ( Base `  Y
)
prdsbl.v  |-  V  =  ( Base `  R
)
prdsbl.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
prdsbl.d  |-  D  =  ( dist `  Y
)
prdsbl.s  |-  ( ph  ->  S  e.  W )
prdsbl.i  |-  ( ph  ->  I  e.  Fin )
prdsbl.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
prdsbl.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
prdsbl.p  |-  ( ph  ->  P  e.  B )
prdsbl.a  |-  ( ph  ->  A  e.  RR* )
prdsbl.g  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
prdsbl  |-  ( ph  ->  ( P ( ball `  D ) A )  =  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) )
Distinct variable groups:    x, A    x, B    x, D    x, I    x, P    ph, x
Allowed substitution hints:    R( x)    S( x)    E( x)    V( x)    W( x)    Y( x)    Z( x)

Proof of Theorem prdsbl
Dummy variables  f 
z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 prdsbl.b . . . . . . . . 9  |-  B  =  ( Base `  Y
)
3 prdsbl.s . . . . . . . . 9  |-  ( ph  ->  S  e.  W )
4 prdsbl.i . . . . . . . . 9  |-  ( ph  ->  I  e.  Fin )
5 prdsbl.r . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
65ralrimiva 2802 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I  R  e.  Z )
7 prdsbl.v . . . . . . . . 9  |-  V  =  ( Base `  R
)
81, 2, 3, 4, 6, 7prdsbas3 14422 . . . . . . . 8  |-  ( ph  ->  B  =  X_ x  e.  I  V )
98eleq2d 2510 . . . . . . 7  |-  ( ph  ->  ( f  e.  B  <->  f  e.  X_ x  e.  I  V ) )
109biimpa 484 . . . . . 6  |-  ( (
ph  /\  f  e.  B )  ->  f  e.  X_ x  e.  I  V )
11 ixpfn 7272 . . . . . 6  |-  ( f  e.  X_ x  e.  I  V  ->  f  Fn  I
)
12 vex 2978 . . . . . . . 8  |-  f  e. 
_V
1312elixp 7273 . . . . . . 7  |-  ( f  e.  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A )  <-> 
( f  Fn  I  /\  A. x  e.  I 
( f `  x
)  e.  ( ( P `  x ) ( ball `  E
) A ) ) )
1413baib 896 . . . . . 6  |-  ( f  Fn  I  ->  (
f  e.  X_ x  e.  I  ( ( P `  x )
( ball `  E ) A )  <->  A. x  e.  I  ( f `  x )  e.  ( ( P `  x
) ( ball `  E
) A ) ) )
1510, 11, 143syl 20 . . . . 5  |-  ( (
ph  /\  f  e.  B )  ->  (
f  e.  X_ x  e.  I  ( ( P `  x )
( ball `  E ) A )  <->  A. x  e.  I  ( f `  x )  e.  ( ( P `  x
) ( ball `  E
) A ) ) )
16 prdsbl.m . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
1716adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
18 prdsbl.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
1918ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  A  e.  RR* )
20 prdsbl.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  B )
211, 2, 3, 4, 6, 7, 20prdsbascl 14424 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I 
( P `  x
)  e.  V )
2221adantr 465 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  ( P `  x )  e.  V
)
2322r19.21bi 2817 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( P `  x )  e.  V )
243adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  S  e.  W )
254adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  I  e.  Fin )
266adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  R  e.  Z )
27 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  f  e.  B )
281, 2, 24, 25, 26, 7, 27prdsbascl 14424 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  ( f `  x )  e.  V
)
2928r19.21bi 2817 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
f `  x )  e.  V )
30 elbl2 19968 . . . . . . 7  |-  ( ( ( E  e.  ( *Met `  V
)  /\  A  e.  RR* )  /\  ( ( P `  x )  e.  V  /\  (
f `  x )  e.  V ) )  -> 
( ( f `  x )  e.  ( ( P `  x
) ( ball `  E
) A )  <->  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3117, 19, 23, 29, 30syl22anc 1219 . . . . . 6  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( f `  x
)  e.  ( ( P `  x ) ( ball `  E
) A )  <->  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3231ralbidva 2734 . . . . 5  |-  ( (
ph  /\  f  e.  B )  ->  ( A. x  e.  I 
( f `  x
)  e.  ( ( P `  x ) ( ball `  E
) A )  <->  A. x  e.  I  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
33 xmetcl 19909 . . . . . . . . . 10  |-  ( ( E  e.  ( *Met `  V )  /\  ( P `  x )  e.  V  /\  ( f `  x
)  e.  V )  ->  ( ( P `
 x ) E ( f `  x
) )  e.  RR* )
3417, 23, 29, 33syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  RR* )
3534ralrimiva 2802 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  ( ( P `  x ) E ( f `  x ) )  e. 
RR* )
36 eqid 2443 . . . . . . . . 9  |-  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  =  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )
37 breq1 4298 . . . . . . . . 9  |-  ( z  =  ( ( P `
 x ) E ( f `  x
) )  ->  (
z  <  A  <->  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3836, 37ralrnmpt 5855 . . . . . . . 8  |-  ( A. x  e.  I  (
( P `  x
) E ( f `
 x ) )  e.  RR*  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  <  A  <->  A. x  e.  I  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3935, 38syl 16 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  < 
A  <->  A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A ) )
40 prdsbl.g . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
4140adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  0  <  A )
42 c0ex 9383 . . . . . . . . . 10  |-  0  e.  _V
43 breq1 4298 . . . . . . . . . 10  |-  ( z  =  0  ->  (
z  <  A  <->  0  <  A ) )
4442, 43ralsn 3918 . . . . . . . . 9  |-  ( A. z  e.  { 0 } z  <  A  <->  0  <  A )
4541, 44sylibr 212 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. z  e.  { 0 } z  <  A )
46 ralunb 3540 . . . . . . . . 9  |-  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) z  <  A  <->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  <  A  /\  A. z  e.  { 0 } z  <  A
) )
4720adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  P  e.  B )
48 prdsbl.e . . . . . . . . . . . 12  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
49 prdsbl.d . . . . . . . . . . . 12  |-  D  =  ( dist `  Y
)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 14426 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  ( P D f )  =  sup ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
51 xrltso 11121 . . . . . . . . . . . . 13  |-  <  Or  RR*
5251a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  <  Or 
RR* )
5336rnmpt 5088 . . . . . . . . . . . . . . 15  |-  ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  =  { y  |  E. x  e.  I  y  =  ( ( P `  x
) E ( f `
 x ) ) }
54 abrexfi 7614 . . . . . . . . . . . . . . 15  |-  ( I  e.  Fin  ->  { y  |  E. x  e.  I  y  =  ( ( P `  x
) E ( f `
 x ) ) }  e.  Fin )
5553, 54syl5eqel 2527 . . . . . . . . . . . . . 14  |-  ( I  e.  Fin  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  e.  Fin )
5625, 55syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  e.  Fin )
57 snfi 7393 . . . . . . . . . . . . 13  |-  { 0 }  e.  Fin
58 unfi 7582 . . . . . . . . . . . . 13  |-  ( ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  e. 
Fin  /\  { 0 }  e.  Fin )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )  e.  Fin )
5956, 57, 58sylancl 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  e. 
Fin )
60 ssun2 3523 . . . . . . . . . . . . . 14  |-  { 0 }  C_  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )
6142snss 4002 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } )  <->  { 0 }  C_  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )
6260, 61mpbir 209 . . . . . . . . . . . . 13  |-  0  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )
63 ne0i 3646 . . . . . . . . . . . . 13  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  =/=  (/) )
6462, 63mp1i 12 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  =/=  (/) )
6534, 36fmptd 5870 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  B )  ->  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) ) : I --> RR* )
66 frn 5568 . . . . . . . . . . . . . 14  |-  ( ( x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) ) : I --> RR*  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  C_  RR* )
6765, 66syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  C_  RR* )
68 0xr 9433 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
6968a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  B )  ->  0  e.  RR* )
7069snssd 4021 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  { 0 }  C_  RR* )
7167, 70unssd 3535 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* )
72 fisupcl 7720 . . . . . . . . . . . 12  |-  ( (  <  Or  RR*  /\  (
( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )  e.  Fin  /\  ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  u. 
{ 0 } )  =/=  (/)  /\  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  u. 
{ 0 } ) )
7352, 59, 64, 71, 72syl13anc 1220 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  u. 
{ 0 } ) )
7450, 73eqeltrd 2517 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  B )  ->  ( P D f )  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } ) )
75 breq1 4298 . . . . . . . . . . 11  |-  ( z  =  ( P D f )  ->  (
z  <  A  <->  ( P D f )  < 
A ) )
7675rspcv 3072 . . . . . . . . . 10  |-  ( ( P D f )  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } )  ->  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) z  <  A  ->  ( P D f )  < 
A ) )
7774, 76syl 16 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) z  <  A  ->  ( P D f )  < 
A ) )
7846, 77syl5bir 218 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  (
( A. z  e. 
ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) ) z  <  A  /\  A. z  e.  { 0 } z  <  A
)  ->  ( P D f )  < 
A ) )
7945, 78mpan2d 674 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  < 
A  ->  ( P D f )  < 
A ) )
8039, 79sylbird 235 . . . . . 6  |-  ( (
ph  /\  f  e.  B )  ->  ( A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A  -> 
( P D f )  <  A ) )
8171adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* )
82 ssun1 3522 . . . . . . . . . . 11  |-  ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  C_  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )
83 ovex 6119 . . . . . . . . . . . . . 14  |-  ( ( P `  x ) E ( f `  x ) )  e. 
_V
8483elabrex 5963 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  (
( P `  x
) E ( f `
 x ) )  e.  { y  |  E. x  e.  I 
y  =  ( ( P `  x ) E ( f `  x ) ) } )
8584adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  { y  |  E. x  e.  I 
y  =  ( ( P `  x ) E ( f `  x ) ) } )
8685, 53syl6eleqr 2534 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) )
8782, 86sseldi 3357 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )
88 supxrub 11290 . . . . . . . . . 10  |-  ( ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )  C_  RR*  /\  (
( P `  x
) E ( f `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )  -> 
( ( P `  x ) E ( f `  x ) )  <_  sup (
( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
8981, 87, 88syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  <_  sup ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
9050adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( P D f )  =  sup ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
9189, 90breqtrrd 4321 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  <_  ( P D f ) )
921, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 19947 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ( *Met `  B ) )
9392ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  D  e.  ( *Met `  B ) )
9420ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  P  e.  B )
9527adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  f  e.  B )
96 xmetcl 19909 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  B )  /\  P  e.  B  /\  f  e.  B
)  ->  ( P D f )  e. 
RR* )
9793, 94, 95, 96syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( P D f )  e. 
RR* )
98 xrlelttr 11133 . . . . . . . . 9  |-  ( ( ( ( P `  x ) E ( f `  x ) )  e.  RR*  /\  ( P D f )  e. 
RR*  /\  A  e.  RR* )  ->  ( (
( ( P `  x ) E ( f `  x ) )  <_  ( P D f )  /\  ( P D f )  <  A )  -> 
( ( P `  x ) E ( f `  x ) )  <  A ) )
9934, 97, 19, 98syl3anc 1218 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( ( ( P `
 x ) E ( f `  x
) )  <_  ( P D f )  /\  ( P D f )  <  A )  -> 
( ( P `  x ) E ( f `  x ) )  <  A ) )
10091, 99mpand 675 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P D f )  <  A  -> 
( ( P `  x ) E ( f `  x ) )  <  A ) )
101100ralrimdva 2809 . . . . . 6  |-  ( (
ph  /\  f  e.  B )  ->  (
( P D f )  <  A  ->  A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A ) )
10280, 101impbid 191 . . . . 5  |-  ( (
ph  /\  f  e.  B )  ->  ( A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A  <->  ( P D f )  < 
A ) )
10315, 32, 1023bitrrd 280 . . . 4  |-  ( (
ph  /\  f  e.  B )  ->  (
( P D f )  <  A  <->  f  e.  X_ x  e.  I  ( ( P `  x
) ( ball `  E
) A ) ) )
104103pm5.32da 641 . . 3  |-  ( ph  ->  ( ( f  e.  B  /\  ( P D f )  < 
A )  <->  ( f  e.  B  /\  f  e.  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) ) ) )
105 elbl 19966 . . . 4  |-  ( ( D  e.  ( *Met `  B )  /\  P  e.  B  /\  A  e.  RR* )  ->  ( f  e.  ( P ( ball `  D
) A )  <->  ( f  e.  B  /\  ( P D f )  < 
A ) ) )
10692, 20, 18, 105syl3anc 1218 . . 3  |-  ( ph  ->  ( f  e.  ( P ( ball `  D
) A )  <->  ( f  e.  B  /\  ( P D f )  < 
A ) ) )
10721r19.21bi 2817 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  ( P `  x )  e.  V )
10818adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  RR* )
109 blssm 19996 . . . . . . . . 9  |-  ( ( E  e.  ( *Met `  V )  /\  ( P `  x )  e.  V  /\  A  e.  RR* )  ->  ( ( P `  x ) ( ball `  E ) A ) 
C_  V )
11016, 107, 108, 109syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
( P `  x
) ( ball `  E
) A )  C_  V )
111110ralrimiva 2802 . . . . . . 7  |-  ( ph  ->  A. x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  V )
112 ss2ixp 7279 . . . . . . 7  |-  ( A. x  e.  I  (
( P `  x
) ( ball `  E
) A )  C_  V  ->  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  X_ x  e.  I  V )
113111, 112syl 16 . . . . . 6  |-  ( ph  -> 
X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  X_ x  e.  I  V )
114113, 8sseqtr4d 3396 . . . . 5  |-  ( ph  -> 
X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  B )
115114sseld 3358 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  I  (
( P `  x
) ( ball `  E
) A )  -> 
f  e.  B ) )
116115pm4.71rd 635 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  (
( P `  x
) ( ball `  E
) A )  <->  ( f  e.  B  /\  f  e.  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) ) ) )
117104, 106, 1163bitr4d 285 . 2  |-  ( ph  ->  ( f  e.  ( P ( ball `  D
) A )  <->  f  e.  X_ x  e.  I  ( ( P `  x
) ( ball `  E
) A ) ) )
118117eqrdv 2441 1  |-  ( ph  ->  ( P ( ball `  D ) A )  =  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2609   A.wral 2718   E.wrex 2719    u. cun 3329    C_ wss 3331   (/)c0 3640   {csn 3880   class class class wbr 4295    e. cmpt 4353    Or wor 4643    X. cxp 4841   ran crn 4844    |` cres 4845    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6094   X_cixp 7266   Fincfn 7313   supcsup 7693   0cc0 9285   RR*cxr 9420    < clt 9421    <_ cle 9422   Basecbs 14177   distcds 14250   X_scprds 14387   *Metcxmt 17804   ballcbl 17806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-map 7219  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-sup 7694  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-icc 11310  df-fz 11441  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-plusg 14254  df-mulr 14255  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-hom 14265  df-cco 14266  df-prds 14389  df-psmet 17812  df-xmet 17813  df-bl 17815
This theorem is referenced by:  prdsxmslem2  20107  prdstotbnd  28696  prdsbnd2  28697
  Copyright terms: Public domain W3C validator