MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbascl Structured version   Unicode version

Theorem prdsbascl 14899
Description: An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsbasmpt2.b  |-  B  =  ( Base `  Y
)
prdsbasmpt2.s  |-  ( ph  ->  S  e.  V )
prdsbasmpt2.i  |-  ( ph  ->  I  e.  W )
prdsbasmpt2.r  |-  ( ph  ->  A. x  e.  I  R  e.  X )
prdsbasmpt2.k  |-  K  =  ( Base `  R
)
prdsbascl.f  |-  ( ph  ->  F  e.  B )
Assertion
Ref Expression
prdsbascl  |-  ( ph  ->  A. x  e.  I 
( F `  x
)  e.  K )
Distinct variable groups:    x, F    x, I
Allowed substitution hints:    ph( x)    B( x)    R( x)    S( x)    K( x)    V( x)    W( x)    X( x)    Y( x)

Proof of Theorem prdsbascl
StepHypRef Expression
1 prdsbasmpt2.y . . . . 5  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 prdsbasmpt2.b . . . . 5  |-  B  =  ( Base `  Y
)
3 prdsbasmpt2.s . . . . 5  |-  ( ph  ->  S  e.  V )
4 prdsbasmpt2.i . . . . 5  |-  ( ph  ->  I  e.  W )
5 prdsbasmpt2.r . . . . . 6  |-  ( ph  ->  A. x  e.  I  R  e.  X )
6 eqid 2457 . . . . . . 7  |-  ( x  e.  I  |->  R )  =  ( x  e.  I  |->  R )
76fnmpt 5713 . . . . . 6  |-  ( A. x  e.  I  R  e.  X  ->  ( x  e.  I  |->  R )  Fn  I )
85, 7syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  R )  Fn  I
)
9 prdsbascl.f . . . . 5  |-  ( ph  ->  F  e.  B )
101, 2, 3, 4, 8, 9prdsbasfn 14887 . . . 4  |-  ( ph  ->  F  Fn  I )
11 dffn5 5918 . . . 4  |-  ( F  Fn  I  <->  F  =  ( x  e.  I  |->  ( F `  x
) ) )
1210, 11sylib 196 . . 3  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
1312, 9eqeltrrd 2546 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( F `  x
) )  e.  B
)
14 prdsbasmpt2.k . . 3  |-  K  =  ( Base `  R
)
151, 2, 3, 4, 5, 14prdsbasmpt2 14898 . 2  |-  ( ph  ->  ( ( x  e.  I  |->  ( F `  x ) )  e.  B  <->  A. x  e.  I 
( F `  x
)  e.  K ) )
1613, 15mpbid 210 1  |-  ( ph  ->  A. x  e.  I 
( F `  x
)  e.  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819   A.wral 2807    |-> cmpt 4515    Fn wfn 5589   ` cfv 5594  (class class class)co 6296   Basecbs 14643   X_scprds 14862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-hom 14735  df-cco 14736  df-prds 14864
This theorem is referenced by:  prdsdsval3  14901  prdsdsf  20995  prdsxmetlem  20996  prdsmet  20998  prdsbl  21119  prdsxmslem2  21157  prdsbnd  30451  prdsbnd2  30453  rrnequiv  30493
  Copyright terms: Public domain W3C validator