MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbas Structured version   Unicode version

Theorem prdsbas 14711
Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
Assertion
Ref Expression
prdsbas  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
Distinct variable groups:    x, B    ph, x    x, I    x, P    x, R    x, S
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem prdsbas
Dummy variables  a 
c  d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2467 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 eqidd 2468 . . 3  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  = 
X_ x  e.  I 
( Base `  ( R `  x ) ) )
5 eqidd 2468 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
6 eqidd 2468 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
7 eqidd 2468 . . 3  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) )
8 eqidd 2468 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) ) )
9 eqidd 2468 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
10 eqidd 2468 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  X_ x  e.  I  ( Base `  ( R `  x )
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) } )
11 eqidd 2468 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
12 eqidd 2468 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) )  =  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
13 eqidd 2468 . . 3  |-  ( ph  ->  ( a  e.  (
X_ x  e.  I 
( Base `  ( R `  x ) )  X.  X_ x  e.  I 
( Base `  ( R `  x ) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x ) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) ( 2nd `  a ) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x ) )  X.  X_ x  e.  I 
( Base `  ( R `  x ) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x ) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) ( 2nd `  a ) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
14 prdsbas.s . . 3  |-  ( ph  ->  S  e.  V )
15 prdsbas.r . . 3  |-  ( ph  ->  R  e.  W )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 14709 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) >. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x )
)  X.  X_ x  e.  I  ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
17 prdsbas.b . 2  |-  B  =  ( Base `  P
)
18 baseid 14535 . 2  |-  Base  = Slot  ( Base `  ndx )
1918strfvss 14507 . . . . . . 7  |-  ( Base `  ( R `  x
) )  C_  U. ran  ( R `  x )
20 fvssunirn 5888 . . . . . . . 8  |-  ( R `
 x )  C_  U.
ran  R
21 rnss 5230 . . . . . . . 8  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
22 uniss 4266 . . . . . . . 8  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2320, 21, 22mp2b 10 . . . . . . 7  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2419, 23sstri 3513 . . . . . 6  |-  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R
2524rgenw 2825 . . . . 5  |-  A. x  e.  I  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R
26 iunss 4366 . . . . 5  |-  ( U_ x  e.  I  ( Base `  ( R `  x ) )  C_  U.
ran  U. ran  R  <->  A. x  e.  I  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R )
2725, 26mpbir 209 . . . 4  |-  U_ x  e.  I  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R
28 rnexg 6716 . . . . . 6  |-  ( R  e.  W  ->  ran  R  e.  _V )
29 uniexg 6580 . . . . . 6  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
3015, 28, 293syl 20 . . . . 5  |-  ( ph  ->  U. ran  R  e. 
_V )
31 rnexg 6716 . . . . 5  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
32 uniexg 6580 . . . . 5  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
3330, 31, 323syl 20 . . . 4  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
34 ssexg 4593 . . . 4  |-  ( (
U_ x  e.  I 
( Base `  ( R `  x ) )  C_  U.
ran  U. ran  R  /\  U.
ran  U. ran  R  e. 
_V )  ->  U_ x  e.  I  ( Base `  ( R `  x
) )  e.  _V )
3527, 33, 34sylancr 663 . . 3  |-  ( ph  ->  U_ x  e.  I 
( Base `  ( R `  x ) )  e. 
_V )
36 ixpssmap2g 7498 . . 3  |-  ( U_ x  e.  I  ( Base `  ( R `  x ) )  e. 
_V  ->  X_ x  e.  I 
( Base `  ( R `  x ) )  C_  ( U_ x  e.  I 
( Base `  ( R `  x ) )  ^m  I ) )
37 ovex 6308 . . . 4  |-  ( U_ x  e.  I  ( Base `  ( R `  x ) )  ^m  I )  e.  _V
3837ssex 4591 . . 3  |-  ( X_ x  e.  I  ( Base `  ( R `  x ) )  C_  ( U_ x  e.  I 
( Base `  ( R `  x ) )  ^m  I )  ->  X_ x  e.  I  ( Base `  ( R `  x
) )  e.  _V )
3935, 36, 383syl 20 . 2  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  e. 
_V )
40 snsstp1 4178 . . . 4  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. }  C_  { <. ( Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }
41 ssun1 3667 . . . 4  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
4240, 41sstri 3513 . . 3  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. }  C_  ( { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
43 ssun1 3667 . . 3  |-  ( {
<. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) >. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x )
)  X.  X_ x  e.  I  ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
4442, 43sstri 3513 . 2  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. }  C_  ( ( {
<. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) >. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x )
)  X.  X_ x  e.  I  ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
4516, 17, 18, 39, 44prdsvallem 14708 1  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    u. cun 3474    C_ wss 3476   {csn 4027   {cpr 4029   {ctp 4031   <.cop 4033   U.cuni 4245   U_ciun 4325   class class class wbr 4447   {copab 4504    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   ran crn 5000    o. ccom 5003   ` cfv 5587  (class class class)co 6283    |-> cmpt2 6285   1stc1st 6782   2ndc2nd 6783    ^m cmap 7420   X_cixp 7469   supcsup 7899   0cc0 9491   RR*cxr 9626    < clt 9627   ndxcnx 14486   Basecbs 14489   +g cplusg 14554   .rcmulr 14555  Scalarcsca 14557   .scvsca 14558   .icip 14559  TopSetcts 14560   lecple 14561   distcds 14563   Hom chom 14565  compcco 14566   TopOpenctopn 14676   Xt_cpt 14693    gsumg cgsu 14695   X_scprds 14700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-fz 11672  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-plusg 14567  df-mulr 14568  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-hom 14578  df-cco 14579  df-prds 14702
This theorem is referenced by:  prdsplusg  14712  prdsmulr  14713  prdsvsca  14714  prdsip  14715  prdsle  14716  prdsds  14718  prdstset  14720  prdshom  14721  prdsco  14722  prdsbas2  14723  pwsbas  14741  dsmmval  18548  frlmip  18592  prdstps  19881  rrxip  21573  prdstotbnd  29909
  Copyright terms: Public domain W3C validator