MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Structured version   Unicode version

Theorem prcdnq 9401
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)

Proof of Theorem prcdnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9334 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2 relxp 4931 . . . . . . 7  |-  Rel  ( Q.  X.  Q. )
3 relss 4911 . . . . . . 7  |-  (  <Q  C_  ( Q.  X.  Q. )  ->  ( Rel  ( Q.  X.  Q. )  ->  Rel  <Q  ) )
41, 2, 3mp2 9 . . . . . 6  |-  Rel  <Q
54brrelexi 4864 . . . . 5  |-  ( C 
<Q  B  ->  C  e. 
_V )
6 eleq1 2474 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
76anbi2d 702 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  e.  P.  /\  x  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
8 breq2 4399 . . . . . . . 8  |-  ( x  =  B  ->  (
y  <Q  x  <->  y  <Q  B ) )
97, 8anbi12d 709 . . . . . . 7  |-  ( x  =  B  ->  (
( ( A  e. 
P.  /\  x  e.  A )  /\  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B ) ) )
109imbi1d 315 . . . . . 6  |-  ( x  =  B  ->  (
( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A
) ) )
11 breq1 4398 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <Q  B  <->  C  <Q  B ) )
1211anbi2d 702 . . . . . . 7  |-  ( y  =  C  ->  (
( ( A  e. 
P.  /\  B  e.  A )  /\  y  <Q  B )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B ) ) )
13 eleq1 2474 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  A  <->  C  e.  A ) )
1412, 13imbi12d 318 . . . . . 6  |-  ( y  =  C  ->  (
( ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) ) )
15 elnpi 9396 . . . . . . . . . . 11  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
1615simprbi 462 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )
1716r19.21bi 2773 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( A. y ( y  <Q  x  ->  y  e.  A )  /\  E. y  e.  A  x 
<Q  y ) )
1817simpld 457 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  A. y ( y 
<Q  x  ->  y  e.  A ) )
191819.21bi 1893 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
2019imp 427 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x
)  ->  y  e.  A )
2110, 14, 20vtocl2g 3121 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  _V )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
225, 21sylan2 472 . . . 4  |-  ( ( B  e.  A  /\  C  <Q  B )  -> 
( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
2322adantll 712 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) )
2423pm2.43i 46 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
)
2524ex 432 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974   A.wal 1403    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   _Vcvv 3059    C_ wss 3414    C. wpss 3415   (/)c0 3738   class class class wbr 4395    X. cxp 4821   Rel wrel 4828   Q.cnq 9260    <Q cltq 9266   P.cnp 9267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-br 4396  df-opab 4454  df-xp 4829  df-rel 4830  df-ltnq 9326  df-np 9389
This theorem is referenced by:  prub  9402  addclprlem1  9424  mulclprlem  9427  distrlem4pr  9434  1idpr  9437  psslinpr  9439  prlem934  9441  ltaddpr  9442  ltexprlem2  9445  ltexprlem3  9446  ltexprlem6  9449  prlem936  9455  reclem2pr  9456  suplem1pr  9460
  Copyright terms: Public domain W3C validator