MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Unicode version

Theorem prcdnq 8826
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)

Proof of Theorem prcdnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8759 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2 relxp 4942 . . . . . . 7  |-  Rel  ( Q.  X.  Q. )
3 relss 4922 . . . . . . 7  |-  (  <Q  C_  ( Q.  X.  Q. )  ->  ( Rel  ( Q.  X.  Q. )  ->  Rel  <Q  ) )
41, 2, 3mp2 9 . . . . . 6  |-  Rel  <Q
54brrelexi 4877 . . . . 5  |-  ( C 
<Q  B  ->  C  e. 
_V )
6 eleq1 2464 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
76anbi2d 685 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  e.  P.  /\  x  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
8 breq2 4176 . . . . . . . 8  |-  ( x  =  B  ->  (
y  <Q  x  <->  y  <Q  B ) )
97, 8anbi12d 692 . . . . . . 7  |-  ( x  =  B  ->  (
( ( A  e. 
P.  /\  x  e.  A )  /\  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B ) ) )
109imbi1d 309 . . . . . 6  |-  ( x  =  B  ->  (
( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A
) ) )
11 breq1 4175 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <Q  B  <->  C  <Q  B ) )
1211anbi2d 685 . . . . . . 7  |-  ( y  =  C  ->  (
( ( A  e. 
P.  /\  B  e.  A )  /\  y  <Q  B )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B ) ) )
13 eleq1 2464 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  A  <->  C  e.  A ) )
1412, 13imbi12d 312 . . . . . 6  |-  ( y  =  C  ->  (
( ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) ) )
15 elnpi 8821 . . . . . . . . . . 11  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
1615simprbi 451 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )
1716r19.21bi 2764 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( A. y ( y  <Q  x  ->  y  e.  A )  /\  E. y  e.  A  x 
<Q  y ) )
1817simpld 446 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  A. y ( y 
<Q  x  ->  y  e.  A ) )
191819.21bi 1770 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
2019imp 419 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x
)  ->  y  e.  A )
2110, 14, 20vtocl2g 2975 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  _V )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
225, 21sylan2 461 . . . 4  |-  ( ( B  e.  A  /\  C  <Q  B )  -> 
( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
2322adantll 695 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) )
2423pm2.43i 45 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
)
2524ex 424 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280    C. wpss 3281   (/)c0 3588   class class class wbr 4172    X. cxp 4835   Rel wrel 4842   Q.cnq 8683    <Q cltq 8689   P.cnp 8690
This theorem is referenced by:  prub  8827  addclprlem1  8849  mulclprlem  8852  distrlem4pr  8859  1idpr  8862  psslinpr  8864  prlem934  8866  ltaddpr  8867  ltexprlem2  8870  ltexprlem3  8871  ltexprlem6  8874  prlem936  8880  reclem2pr  8881  suplem1pr  8885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-ltnq 8751  df-np 8814
  Copyright terms: Public domain W3C validator