MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Visualization version   Unicode version

Theorem ppiublem1 24179
Description: Lemma for ppiub 24181. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1  |-  ( N  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( N ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
ppiublem1.2  |-  M  e. 
NN0
ppiublem1.3  |-  N  =  ( M  +  1 )
ppiublem1.4  |-  ( 2 
||  M  \/  3 
||  M  \/  M  e.  { 1 ,  5 } )
Assertion
Ref Expression
ppiublem1  |-  ( M  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( M ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6  |-  ( N  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( N ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
21simpli 464 . . . . 5  |-  N  <_ 
6
3 ppiublem1.3 . . . . 5  |-  N  =  ( M  +  1 )
4 df-6 10700 . . . . 5  |-  6  =  ( 5  +  1 )
52, 3, 43brtr3i 4444 . . . 4  |-  ( M  +  1 )  <_ 
( 5  +  1 )
6 ppiublem1.2 . . . . . 6  |-  M  e. 
NN0
76nn0rei 10909 . . . . 5  |-  M  e.  RR
8 5re 10716 . . . . 5  |-  5  e.  RR
9 1re 9668 . . . . 5  |-  1  e.  RR
107, 8, 9leadd1i 10197 . . . 4  |-  ( M  <_  5  <->  ( M  +  1 )  <_ 
( 5  +  1 ) )
115, 10mpbir 214 . . 3  |-  M  <_ 
5
12 6re 10718 . . . 4  |-  6  e.  RR
13 5lt6 10815 . . . 4  |-  5  <  6
148, 12, 13ltleii 9783 . . 3  |-  5  <_  6
157, 8, 12letri 9789 . . 3  |-  ( ( M  <_  5  /\  5  <_  6 )  ->  M  <_  6 )
1611, 14, 15mp2an 683 . 2  |-  M  <_ 
6
176nn0zi 10991 . . . . 5  |-  M  e.  ZZ
18 5nn 10799 . . . . . 6  |-  5  e.  NN
1918nnzi 10990 . . . . 5  |-  5  e.  ZZ
20 eluz2 11194 . . . . 5  |-  ( 5  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  5  e.  ZZ  /\  M  <_ 
5 ) )
2117, 19, 11, 20mpbir3an 1196 . . . 4  |-  5  e.  ( ZZ>= `  M )
22 elfzp12 11902 . . . 4  |-  ( 5  e.  ( ZZ>= `  M
)  ->  ( ( P  mod  6 )  e.  ( M ... 5
)  <->  ( ( P  mod  6 )  =  M  \/  ( P  mod  6 )  e.  ( ( M  + 
1 ) ... 5
) ) ) )
2321, 22ax-mp 5 . . 3  |-  ( ( P  mod  6 )  e.  ( M ... 5 )  <->  ( ( P  mod  6 )  =  M  \/  ( P  mod  6 )  e.  ( ( M  + 
1 ) ... 5
) ) )
24 ppiublem1.4 . . . . 5  |-  ( 2 
||  M  \/  3 
||  M  \/  M  e.  { 1 ,  5 } )
25 prmz 14675 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2625adantr 471 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  P  e.  ZZ )
27 2nn 10796 . . . . . . . . . . . 12  |-  2  e.  NN
28 6nn 10800 . . . . . . . . . . . 12  |-  6  e.  NN
29 3z 10999 . . . . . . . . . . . . . . 15  |-  3  e.  ZZ
30 2z 10998 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
31 dvdsmul2 14374 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( 3  x.  2 ) )
3229, 30, 31mp2an 683 . . . . . . . . . . . . . 14  |-  2  ||  ( 3  x.  2 )
33 3t2e6 10790 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
3432, 33breqtri 4440 . . . . . . . . . . . . 13  |-  2  ||  6
35 dvdsmod 14411 . . . . . . . . . . . . 13  |-  ( ( ( 2  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  /\  2  ||  6 )  ->  ( 2  ||  ( P  mod  6
)  <->  2  ||  P
) )
3634, 35mpan2 682 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  P ) )
3727, 28, 36mp3an12 1363 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  P ) )
3826, 37syl 17 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  P ) )
39 uzid 11202 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
4030, 39ax-mp 5 . . . . . . . . . . 11  |-  2  e.  ( ZZ>= `  2 )
41 simpl 463 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  P  e.  Prime )
42 dvdsprm 14696 . . . . . . . . . . 11  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
4340, 41, 42sylancr 674 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  P  <->  2  =  P ) )
4438, 43bitrd 261 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  ( P  mod  6 )  <->  2  =  P ) )
45 simpr 467 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  4  <_  P )
46 breq2 4420 . . . . . . . . . . 11  |-  ( 2  =  P  ->  (
4  <_  2  <->  4  <_  P ) )
4745, 46syl5ibrcom 230 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  =  P  -> 
4  <_  2 ) )
48 2lt4 10809 . . . . . . . . . . . 12  |-  2  <  4
49 2re 10707 . . . . . . . . . . . . 13  |-  2  e.  RR
50 4re 10714 . . . . . . . . . . . . 13  |-  4  e.  RR
5149, 50ltnlei 9781 . . . . . . . . . . . 12  |-  ( 2  <  4  <->  -.  4  <_  2 )
5248, 51mpbi 213 . . . . . . . . . . 11  |-  -.  4  <_  2
5352pm2.21i 136 . . . . . . . . . 10  |-  ( 4  <_  2  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } )
5447, 53syl6 34 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  =  P  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
5544, 54sylbid 223 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  ( P  mod  6 )  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } ) )
56 breq2 4420 . . . . . . . . 9  |-  ( ( P  mod  6 )  =  M  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  M ) )
5756imbi1d 323 . . . . . . . 8  |-  ( ( P  mod  6 )  =  M  ->  (
( 2  ||  ( P  mod  6 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } )  <-> 
( 2  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
5855, 57syl5ibcom 228 . . . . . . 7  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  =  M  -> 
( 2  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
5958com3r 82 . . . . . 6  |-  ( 2 
||  M  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
60 3nn 10797 . . . . . . . . . . . 12  |-  3  e.  NN
61 dvdsmul1 14373 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  3  ||  ( 3  x.  2 ) )
6229, 30, 61mp2an 683 . . . . . . . . . . . . . 14  |-  3  ||  ( 3  x.  2 )
6362, 33breqtri 4440 . . . . . . . . . . . . 13  |-  3  ||  6
64 dvdsmod 14411 . . . . . . . . . . . . 13  |-  ( ( ( 3  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  /\  3  ||  6 )  ->  ( 3  ||  ( P  mod  6
)  <->  3  ||  P
) )
6563, 64mpan2 682 . . . . . . . . . . . 12  |-  ( ( 3  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  P ) )
6660, 28, 65mp3an12 1363 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  P ) )
6726, 66syl 17 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  P ) )
68 df-3 10697 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
69 peano2uz 11241 . . . . . . . . . . . . 13  |-  ( 2  e.  ( ZZ>= `  2
)  ->  ( 2  +  1 )  e.  ( ZZ>= `  2 )
)
7040, 69ax-mp 5 . . . . . . . . . . . 12  |-  ( 2  +  1 )  e.  ( ZZ>= `  2 )
7168, 70eqeltri 2536 . . . . . . . . . . 11  |-  3  e.  ( ZZ>= `  2 )
72 dvdsprm 14696 . . . . . . . . . . 11  |-  ( ( 3  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
3  ||  P  <->  3  =  P ) )
7371, 41, 72sylancr 674 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  P  <->  3  =  P ) )
7467, 73bitrd 261 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  ( P  mod  6 )  <->  3  =  P ) )
75 breq2 4420 . . . . . . . . . . 11  |-  ( 3  =  P  ->  (
4  <_  3  <->  4  <_  P ) )
7645, 75syl5ibrcom 230 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  =  P  -> 
4  <_  3 ) )
77 3lt4 10808 . . . . . . . . . . . 12  |-  3  <  4
78 3re 10711 . . . . . . . . . . . . 13  |-  3  e.  RR
7978, 50ltnlei 9781 . . . . . . . . . . . 12  |-  ( 3  <  4  <->  -.  4  <_  3 )
8077, 79mpbi 213 . . . . . . . . . . 11  |-  -.  4  <_  3
8180pm2.21i 136 . . . . . . . . . 10  |-  ( 4  <_  3  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } )
8276, 81syl6 34 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  =  P  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
8374, 82sylbid 223 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  ( P  mod  6 )  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } ) )
84 breq2 4420 . . . . . . . . 9  |-  ( ( P  mod  6 )  =  M  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  M ) )
8584imbi1d 323 . . . . . . . 8  |-  ( ( P  mod  6 )  =  M  ->  (
( 3  ||  ( P  mod  6 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } )  <-> 
( 3  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
8683, 85syl5ibcom 228 . . . . . . 7  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  =  M  -> 
( 3  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
8786com3r 82 . . . . . 6  |-  ( 3 
||  M  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
88 eleq1a 2535 . . . . . . 7  |-  ( M  e.  { 1 ,  5 }  ->  (
( P  mod  6
)  =  M  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
8988a1d 26 . . . . . 6  |-  ( M  e.  { 1 ,  5 }  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
9059, 87, 893jaoi 1340 . . . . 5  |-  ( ( 2  ||  M  \/  3  ||  M  \/  M  e.  { 1 ,  5 } )  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
9124, 90ax-mp 5 . . . 4  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  =  M  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
923oveq1i 6325 . . . . . 6  |-  ( N ... 5 )  =  ( ( M  + 
1 ) ... 5
)
9392eleq2i 2532 . . . . 5  |-  ( ( P  mod  6 )  e.  ( N ... 5 )  <->  ( P  mod  6 )  e.  ( ( M  +  1 ) ... 5 ) )
941simpri 468 . . . . 5  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  e.  ( N ... 5 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
9593, 94syl5bir 226 . . . 4  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  e.  ( ( M  +  1 ) ... 5 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
9691, 95jaod 386 . . 3  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( ( P  mod  6 )  =  M  \/  ( P  mod  6 )  e.  ( ( M  +  1 ) ... 5 ) )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) )
9723, 96syl5bi 225 . 2  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  e.  ( M ... 5 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
9816, 97pm3.2i 461 1  |-  ( M  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( M ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    \/ w3o 990    /\ w3a 991    = wceq 1455    e. wcel 1898   {cpr 3982   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   1c1 9566    + caddc 9568    x. cmul 9570    < clt 9701    <_ cle 9702   NNcn 10637   2c2 10687   3c3 10688   4c4 10689   5c5 10690   6c6 10691   NN0cn0 10898   ZZcz 10966   ZZ>=cuz 11188   ...cfz 11813    mod cmo 12128    || cdvds 14354   Primecprime 14671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-sup 7982  df-inf 7983  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-n0 10899  df-z 10967  df-uz 11189  df-rp 11332  df-fz 11814  df-fl 12060  df-mod 12129  df-dvds 14355  df-prm 14672
This theorem is referenced by:  ppiublem2  24180
  Copyright terms: Public domain W3C validator