MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Unicode version

Theorem ppiublem1 22669
Description: Lemma for ppiub 22671. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1  |-  ( N  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( N ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
ppiublem1.2  |-  M  e. 
NN0
ppiublem1.3  |-  N  =  ( M  +  1 )
ppiublem1.4  |-  ( 2 
||  M  \/  3 
||  M  \/  M  e.  { 1 ,  5 } )
Assertion
Ref Expression
ppiublem1  |-  ( M  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( M ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6  |-  ( N  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( N ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
21simpli 458 . . . . 5  |-  N  <_ 
6
3 ppiublem1.3 . . . . 5  |-  N  =  ( M  +  1 )
4 df-6 10490 . . . . 5  |-  6  =  ( 5  +  1 )
52, 3, 43brtr3i 4422 . . . 4  |-  ( M  +  1 )  <_ 
( 5  +  1 )
6 ppiublem1.2 . . . . . 6  |-  M  e. 
NN0
76nn0rei 10696 . . . . 5  |-  M  e.  RR
8 5re 10506 . . . . 5  |-  5  e.  RR
9 1re 9491 . . . . 5  |-  1  e.  RR
107, 8, 9leadd1i 10001 . . . 4  |-  ( M  <_  5  <->  ( M  +  1 )  <_ 
( 5  +  1 ) )
115, 10mpbir 209 . . 3  |-  M  <_ 
5
12 6re 10508 . . . 4  |-  6  e.  RR
13 5lt6 10604 . . . 4  |-  5  <  6
148, 12, 13ltleii 9603 . . 3  |-  5  <_  6
157, 8, 12letri 9609 . . 3  |-  ( ( M  <_  5  /\  5  <_  6 )  ->  M  <_  6 )
1611, 14, 15mp2an 672 . 2  |-  M  <_ 
6
176nn0zi 10777 . . . . 5  |-  M  e.  ZZ
18 5nn 10588 . . . . . 6  |-  5  e.  NN
1918nnzi 10776 . . . . 5  |-  5  e.  ZZ
20 eluz2 10973 . . . . 5  |-  ( 5  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  5  e.  ZZ  /\  M  <_ 
5 ) )
2117, 19, 11, 20mpbir3an 1170 . . . 4  |-  5  e.  ( ZZ>= `  M )
22 elfzp12 11651 . . . 4  |-  ( 5  e.  ( ZZ>= `  M
)  ->  ( ( P  mod  6 )  e.  ( M ... 5
)  <->  ( ( P  mod  6 )  =  M  \/  ( P  mod  6 )  e.  ( ( M  + 
1 ) ... 5
) ) ) )
2321, 22ax-mp 5 . . 3  |-  ( ( P  mod  6 )  e.  ( M ... 5 )  <->  ( ( P  mod  6 )  =  M  \/  ( P  mod  6 )  e.  ( ( M  + 
1 ) ... 5
) ) )
24 ppiublem1.4 . . . . 5  |-  ( 2 
||  M  \/  3 
||  M  \/  M  e.  { 1 ,  5 } )
25 prmz 13880 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2625adantr 465 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  P  e.  ZZ )
27 2nn 10585 . . . . . . . . . . . 12  |-  2  e.  NN
28 6nn 10589 . . . . . . . . . . . 12  |-  6  e.  NN
29 3z 10785 . . . . . . . . . . . . . . 15  |-  3  e.  ZZ
30 2z 10784 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
31 dvdsmul2 13668 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( 3  x.  2 ) )
3229, 30, 31mp2an 672 . . . . . . . . . . . . . 14  |-  2  ||  ( 3  x.  2 )
33 3t2e6 10579 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
3432, 33breqtri 4418 . . . . . . . . . . . . 13  |-  2  ||  6
35 dvdsmod 13703 . . . . . . . . . . . . 13  |-  ( ( ( 2  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  /\  2  ||  6 )  ->  ( 2  ||  ( P  mod  6
)  <->  2  ||  P
) )
3634, 35mpan2 671 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  P ) )
3727, 28, 36mp3an12 1305 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  P ) )
3826, 37syl 16 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  P ) )
39 uzid 10981 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
4030, 39ax-mp 5 . . . . . . . . . . 11  |-  2  e.  ( ZZ>= `  2 )
41 simpl 457 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  P  e.  Prime )
42 dvdsprm 13898 . . . . . . . . . . 11  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
4340, 41, 42sylancr 663 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  P  <->  2  =  P ) )
4438, 43bitrd 253 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  ( P  mod  6 )  <->  2  =  P ) )
45 simpr 461 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  4  <_  P )
46 breq2 4399 . . . . . . . . . . 11  |-  ( 2  =  P  ->  (
4  <_  2  <->  4  <_  P ) )
4745, 46syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  =  P  -> 
4  <_  2 ) )
48 2lt4 10598 . . . . . . . . . . . 12  |-  2  <  4
49 2re 10497 . . . . . . . . . . . . 13  |-  2  e.  RR
50 4re 10504 . . . . . . . . . . . . 13  |-  4  e.  RR
5149, 50ltnlei 9601 . . . . . . . . . . . 12  |-  ( 2  <  4  <->  -.  4  <_  2 )
5248, 51mpbi 208 . . . . . . . . . . 11  |-  -.  4  <_  2
5352pm2.21i 131 . . . . . . . . . 10  |-  ( 4  <_  2  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } )
5447, 53syl6 33 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  =  P  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
5544, 54sylbid 215 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
2  ||  ( P  mod  6 )  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } ) )
56 breq2 4399 . . . . . . . . 9  |-  ( ( P  mod  6 )  =  M  ->  (
2  ||  ( P  mod  6 )  <->  2  ||  M ) )
5756imbi1d 317 . . . . . . . 8  |-  ( ( P  mod  6 )  =  M  ->  (
( 2  ||  ( P  mod  6 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } )  <-> 
( 2  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
5855, 57syl5ibcom 220 . . . . . . 7  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  =  M  -> 
( 2  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
5958com3r 79 . . . . . 6  |-  ( 2 
||  M  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
60 3nn 10586 . . . . . . . . . . . 12  |-  3  e.  NN
61 dvdsmul1 13667 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  3  ||  ( 3  x.  2 ) )
6229, 30, 61mp2an 672 . . . . . . . . . . . . . 14  |-  3  ||  ( 3  x.  2 )
6362, 33breqtri 4418 . . . . . . . . . . . . 13  |-  3  ||  6
64 dvdsmod 13703 . . . . . . . . . . . . 13  |-  ( ( ( 3  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  /\  3  ||  6 )  ->  ( 3  ||  ( P  mod  6
)  <->  3  ||  P
) )
6563, 64mpan2 671 . . . . . . . . . . . 12  |-  ( ( 3  e.  NN  /\  6  e.  NN  /\  P  e.  ZZ )  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  P ) )
6660, 28, 65mp3an12 1305 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  P ) )
6726, 66syl 16 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  P ) )
68 df-3 10487 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
69 peano2uz 11014 . . . . . . . . . . . . 13  |-  ( 2  e.  ( ZZ>= `  2
)  ->  ( 2  +  1 )  e.  ( ZZ>= `  2 )
)
7040, 69ax-mp 5 . . . . . . . . . . . 12  |-  ( 2  +  1 )  e.  ( ZZ>= `  2 )
7168, 70eqeltri 2536 . . . . . . . . . . 11  |-  3  e.  ( ZZ>= `  2 )
72 dvdsprm 13898 . . . . . . . . . . 11  |-  ( ( 3  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
3  ||  P  <->  3  =  P ) )
7371, 41, 72sylancr 663 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  P  <->  3  =  P ) )
7467, 73bitrd 253 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  ( P  mod  6 )  <->  3  =  P ) )
75 breq2 4399 . . . . . . . . . . 11  |-  ( 3  =  P  ->  (
4  <_  3  <->  4  <_  P ) )
7645, 75syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  =  P  -> 
4  <_  3 ) )
77 3lt4 10597 . . . . . . . . . . . 12  |-  3  <  4
78 3re 10501 . . . . . . . . . . . . 13  |-  3  e.  RR
7978, 50ltnlei 9601 . . . . . . . . . . . 12  |-  ( 3  <  4  <->  -.  4  <_  3 )
8077, 79mpbi 208 . . . . . . . . . . 11  |-  -.  4  <_  3
8180pm2.21i 131 . . . . . . . . . 10  |-  ( 4  <_  3  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } )
8276, 81syl6 33 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  =  P  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
8374, 82sylbid 215 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
3  ||  ( P  mod  6 )  ->  ( P  mod  6 )  e. 
{ 1 ,  5 } ) )
84 breq2 4399 . . . . . . . . 9  |-  ( ( P  mod  6 )  =  M  ->  (
3  ||  ( P  mod  6 )  <->  3  ||  M ) )
8584imbi1d 317 . . . . . . . 8  |-  ( ( P  mod  6 )  =  M  ->  (
( 3  ||  ( P  mod  6 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } )  <-> 
( 3  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
8683, 85syl5ibcom 220 . . . . . . 7  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  =  M  -> 
( 3  ||  M  ->  ( P  mod  6
)  e.  { 1 ,  5 } ) ) )
8786com3r 79 . . . . . 6  |-  ( 3 
||  M  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
88 eleq1a 2535 . . . . . . 7  |-  ( M  e.  { 1 ,  5 }  ->  (
( P  mod  6
)  =  M  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
8988a1d 25 . . . . . 6  |-  ( M  e.  { 1 ,  5 }  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
9059, 87, 893jaoi 1282 . . . . 5  |-  ( ( 2  ||  M  \/  3  ||  M  \/  M  e.  { 1 ,  5 } )  ->  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  =  M  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
9124, 90ax-mp 5 . . . 4  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  =  M  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
923oveq1i 6205 . . . . . 6  |-  ( N ... 5 )  =  ( ( M  + 
1 ) ... 5
)
9392eleq2i 2530 . . . . 5  |-  ( ( P  mod  6 )  e.  ( N ... 5 )  <->  ( P  mod  6 )  e.  ( ( M  +  1 ) ... 5 ) )
941simpri 462 . . . . 5  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  e.  ( N ... 5 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
9593, 94syl5bir 218 . . . 4  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  e.  ( ( M  +  1 ) ... 5 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
9691, 95jaod 380 . . 3  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( ( P  mod  6 )  =  M  \/  ( P  mod  6 )  e.  ( ( M  +  1 ) ... 5 ) )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) )
9723, 96syl5bi 217 . 2  |-  ( ( P  e.  Prime  /\  4  <_  P )  ->  (
( P  mod  6
)  e.  ( M ... 5 )  -> 
( P  mod  6
)  e.  { 1 ,  5 } ) )
9816, 97pm3.2i 455 1  |-  ( M  <_  6  /\  (
( P  e.  Prime  /\  4  <_  P )  ->  ( ( P  mod  6 )  e.  ( M ... 5 )  ->  ( P  mod  6 )  e.  {
1 ,  5 } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1370    e. wcel 1758   {cpr 3982   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   1c1 9389    + caddc 9391    x. cmul 9393    < clt 9524    <_ cle 9525   NNcn 10428   2c2 10477   3c3 10478   4c4 10479   5c5 10480   6c6 10481   NN0cn0 10685   ZZcz 10752   ZZ>=cuz 10967   ...cfz 11549    mod cmo 11820    || cdivides 13648   Primecprime 13876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-2o 7026  df-oadd 7029  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-sup 7797  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-n0 10686  df-z 10753  df-uz 10968  df-rp 11098  df-fz 11550  df-fl 11754  df-mod 11821  df-dvds 13649  df-prm 13877
This theorem is referenced by:  ppiublem2  22670
  Copyright terms: Public domain W3C validator