MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiub Structured version   Unicode version

Theorem ppiub 22523
Description: An upper bound on the prime-counting function π, which counts the number of primes less than 
N. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
ppiub  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
(π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )

Proof of Theorem ppiub
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 3re 10387 . . 3  |-  3  e.  RR
21a1i 11 . 2  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
3  e.  RR )
3 simpl 457 . 2  |-  ( ( N  e.  RR  /\  0  <_  N )  ->  N  e.  RR )
4 ppicl 22449 . . . . . . . 8  |-  ( N  e.  RR  ->  (π `  N )  e.  NN0 )
54nn0red 10629 . . . . . . 7  |-  ( N  e.  RR  ->  (π `  N )  e.  RR )
65adantr 465 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  N )  e.  RR )
7 2re 10383 . . . . . 6  |-  2  e.  RR
8 resubcl 9665 . . . . . 6  |-  ( ( (π `  N )  e.  RR  /\  2  e.  RR )  ->  (
(π `  N )  - 
2 )  e.  RR )
96, 7, 8sylancl 662 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  e.  RR )
10 fzfi 11786 . . . . . . . . 9  |-  ( 4 ... ( |_ `  N ) )  e. 
Fin
11 ssrab2 3432 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  C_  ( 4 ... ( |_ `  N ) )
12 ssfi 7525 . . . . . . . . 9  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  C_  ( 4 ... ( |_ `  N ) ) )  ->  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } }  e.  Fin )
1310, 11, 12mp2an 672 . . . . . . . 8  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  e.  Fin
14 hashcl 12118 . . . . . . . 8  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  e.  Fin  ->  ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }
)  e.  NN0 )
1513, 14ax-mp 5 . . . . . . 7  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  e.  NN0
1615nn0rei 10582 . . . . . 6  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  e.  RR
1716a1i 11 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  e.  RR )
18 3nn 10472 . . . . . . 7  |-  3  e.  NN
19 nndivre 10349 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  e.  NN )  ->  ( N  /  3
)  e.  RR )
2018, 19mpan2 671 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  3 )  e.  RR )
2120adantr 465 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  /  3
)  e.  RR )
22 ppifl 22478 . . . . . . . . 9  |-  ( N  e.  RR  ->  (π `  ( |_ `  N
) )  =  (π `  N ) )
2322adantr 465 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  ( |_ `  N ) )  =  (π `  N ) )
24 ppi3 22489 . . . . . . . . 9  |-  (π `  3
)  =  2
2524a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  3 )  =  2 )
2623, 25oveq12d 6104 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  ( |_ `  N ) )  -  (π `
 3 ) )  =  ( (π `  N
)  -  2 ) )
27 3z 10671 . . . . . . . . . . 11  |-  3  e.  ZZ
2827a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
3  e.  ZZ )
29 flcl 11637 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  ZZ )
3029adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  ZZ )
31 flge 11647 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  e.  ZZ )  ->  ( 3  <_  N  <->  3  <_  ( |_ `  N ) ) )
3227, 31mpan2 671 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
3  <_  N  <->  3  <_  ( |_ `  N ) ) )
3332biimpa 484 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
3  <_  ( |_ `  N ) )
34 eluz2 10859 . . . . . . . . . 10  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  <->  ( 3  e.  ZZ  /\  ( |_
`  N )  e.  ZZ  /\  3  <_ 
( |_ `  N
) ) )
3528, 30, 33, 34syl3anbrc 1172 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  ( ZZ>= ` 
3 ) )
36 ppidif 22481 . . . . . . . . 9  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  ( (π `  ( |_ `  N
) )  -  (π `  3 ) )  =  ( # `  (
( ( 3  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ) )
3735, 36syl 16 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  ( |_ `  N ) )  -  (π `
 3 ) )  =  ( # `  (
( ( 3  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ) )
38 df-4 10374 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
3938oveq1i 6096 . . . . . . . . . 10  |-  ( 4 ... ( |_ `  N ) )  =  ( ( 3  +  1 ) ... ( |_ `  N ) )
4039ineq1i 3543 . . . . . . . . 9  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  =  ( ( ( 3  +  1 ) ... ( |_ `  N ) )  i^i  Prime )
4140fveq2i 5689 . . . . . . . 8  |-  ( # `  ( ( 4 ... ( |_ `  N
) )  i^i  Prime ) )  =  ( # `  ( ( ( 3  +  1 ) ... ( |_ `  N
) )  i^i  Prime ) )
4237, 41syl6eqr 2488 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  ( |_ `  N ) )  -  (π `
 3 ) )  =  ( # `  (
( 4 ... ( |_ `  N ) )  i^i  Prime ) ) )
4326, 42eqtr3d 2472 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  =  (
# `  ( (
4 ... ( |_ `  N ) )  i^i 
Prime ) ) )
44 dfin5 3331 . . . . . . . . 9  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  =  {
k  e.  ( 4 ... ( |_ `  N ) )  |  k  e.  Prime }
45 elfzle1 11446 . . . . . . . . . . 11  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  4  <_  k )
46 ppiublem2 22522 . . . . . . . . . . . 12  |-  ( ( k  e.  Prime  /\  4  <_  k )  ->  (
k  mod  6 )  e.  { 1 ,  5 } )
4746expcom 435 . . . . . . . . . . 11  |-  ( 4  <_  k  ->  (
k  e.  Prime  ->  ( k  mod  6 )  e.  { 1 ,  5 } ) )
4845, 47syl 16 . . . . . . . . . 10  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
k  e.  Prime  ->  ( k  mod  6 )  e.  { 1 ,  5 } ) )
4948ss2rabi 3429 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  k  e.  Prime }  C_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }
5044, 49eqsstri 3381 . . . . . . . 8  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  C_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }
51 ssdomg 7347 . . . . . . . 8  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  e.  Fin  ->  ( (
( 4 ... ( |_ `  N ) )  i^i  Prime )  C_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  ->  ( ( 4 ... ( |_ `  N ) )  i^i  Prime )  ~<_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } ) )
5213, 50, 51mp2 9 . . . . . . 7  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  ~<_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }
53 inss1 3565 . . . . . . . . 9  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  C_  (
4 ... ( |_ `  N ) )
54 ssfi 7525 . . . . . . . . 9  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  (
( 4 ... ( |_ `  N ) )  i^i  Prime )  C_  (
4 ... ( |_ `  N ) ) )  ->  ( ( 4 ... ( |_ `  N ) )  i^i 
Prime )  e.  Fin )
5510, 53, 54mp2an 672 . . . . . . . 8  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  e.  Fin
56 hashdom 12134 . . . . . . . 8  |-  ( ( ( ( 4 ... ( |_ `  N
) )  i^i  Prime )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  e.  Fin )  ->  (
( # `  ( ( 4 ... ( |_
`  N ) )  i^i  Prime ) )  <_ 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  <-> 
( ( 4 ... ( |_ `  N
) )  i^i  Prime )  ~<_  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } ) )
5755, 13, 56mp2an 672 . . . . . . 7  |-  ( (
# `  ( (
4 ... ( |_ `  N ) )  i^i 
Prime ) )  <_  ( # `
 { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  <->  ( (
4 ... ( |_ `  N ) )  i^i 
Prime )  ~<_  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )
5852, 57mpbir 209 . . . . . 6  |-  ( # `  ( ( 4 ... ( |_ `  N
) )  i^i  Prime ) )  <_  ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }
)
5943, 58syl6eqbr 4324 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  <_  ( # `
 { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } ) )
60 reflcl 11638 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  RR )
6160adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  RR )
62 peano2rem 9667 . . . . . . . . . 10  |-  ( ( |_ `  N )  e.  RR  ->  (
( |_ `  N
)  -  1 )  e.  RR )
6361, 62syl 16 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  1 )  e.  RR )
64 6nn 10475 . . . . . . . . 9  |-  6  e.  NN
65 nndivre 10349 . . . . . . . . 9  |-  ( ( ( ( |_ `  N )  -  1 )  e.  RR  /\  6  e.  NN )  ->  ( ( ( |_
`  N )  - 
1 )  /  6
)  e.  RR )
6663, 64, 65sylancl 662 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
1 )  /  6
)  e.  RR )
67 reflcl 11638 . . . . . . . 8  |-  ( ( ( ( |_ `  N )  -  1 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  e.  RR )
6866, 67syl 16 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  e.  RR )
69 5re 10392 . . . . . . . . . . 11  |-  5  e.  RR
70 resubcl 9665 . . . . . . . . . . 11  |-  ( ( ( |_ `  N
)  e.  RR  /\  5  e.  RR )  ->  ( ( |_ `  N )  -  5 )  e.  RR )
7161, 69, 70sylancl 662 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  5 )  e.  RR )
72 nndivre 10349 . . . . . . . . . 10  |-  ( ( ( ( |_ `  N )  -  5 )  e.  RR  /\  6  e.  NN )  ->  ( ( ( |_
`  N )  - 
5 )  /  6
)  e.  RR )
7371, 64, 72sylancl 662 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
5 )  /  6
)  e.  RR )
74 reflcl 11638 . . . . . . . . 9  |-  ( ( ( ( |_ `  N )  -  5 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  e.  RR )
7573, 74syl 16 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  RR )
76 peano2re 9534 . . . . . . . 8  |-  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  e.  RR  ->  (
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  +  1 )  e.  RR )
7775, 76syl 16 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  +  1 )  e.  RR )
78 peano2rem 9667 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
7978adantr 465 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  1 )  e.  RR )
80 nndivre 10349 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  RR  /\  6  e.  NN )  ->  ( ( N  - 
1 )  /  6
)  e.  RR )
8179, 64, 80sylancl 662 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
1 )  /  6
)  e.  RR )
82 simpl 457 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  ->  N  e.  RR )
83 resubcl 9665 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  5  e.  RR )  ->  ( N  -  5 )  e.  RR )
8482, 69, 83sylancl 662 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  5 )  e.  RR )
85 nndivre 10349 . . . . . . . . 9  |-  ( ( ( N  -  5 )  e.  RR  /\  6  e.  NN )  ->  ( ( N  - 
5 )  /  6
)  e.  RR )
8684, 64, 85sylancl 662 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
5 )  /  6
)  e.  RR )
87 peano2re 9534 . . . . . . . 8  |-  ( ( ( N  -  5 )  /  6 )  e.  RR  ->  (
( ( N  - 
5 )  /  6
)  +  1 )  e.  RR )
8886, 87syl 16 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  -  5 )  / 
6 )  +  1 )  e.  RR )
89 flle 11641 . . . . . . . . 9  |-  ( ( ( ( |_ `  N )  -  1 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  <_ 
( ( ( |_
`  N )  - 
1 )  /  6
) )
9066, 89syl 16 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  <_  ( (
( |_ `  N
)  -  1 )  /  6 ) )
91 1re 9377 . . . . . . . . . . 11  |-  1  e.  RR
9291a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
1  e.  RR )
93 flle 11641 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( |_ `  N )  <_  N )
9493adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  <_  N )
9561, 82, 92, 94lesub1dd 9947 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  1 )  <_  ( N  -  1 ) )
96 6re 10394 . . . . . . . . . . 11  |-  6  e.  RR
9796a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
6  e.  RR )
98 6pos 10412 . . . . . . . . . . 11  |-  0  <  6
9998a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
0  <  6 )
100 lediv1 10186 . . . . . . . . . 10  |-  ( ( ( ( |_ `  N )  -  1 )  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( 6  e.  RR  /\  0  <  6 ) )  ->  ( (
( |_ `  N
)  -  1 )  <_  ( N  - 
1 )  <->  ( (
( |_ `  N
)  -  1 )  /  6 )  <_ 
( ( N  - 
1 )  /  6
) ) )
10163, 79, 97, 99, 100syl112anc 1222 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
1 )  <_  ( N  -  1 )  <-> 
( ( ( |_
`  N )  - 
1 )  /  6
)  <_  ( ( N  -  1 )  /  6 ) ) )
10295, 101mpbid 210 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
1 )  /  6
)  <_  ( ( N  -  1 )  /  6 ) )
10368, 66, 81, 90, 102letrd 9520 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  <_  ( ( N  -  1 )  /  6 ) )
104 flle 11641 . . . . . . . . . 10  |-  ( ( ( ( |_ `  N )  -  5 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  <_ 
( ( ( |_
`  N )  - 
5 )  /  6
) )
10573, 104syl 16 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  <_  ( (
( |_ `  N
)  -  5 )  /  6 ) )
10669a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
5  e.  RR )
10761, 82, 106, 94lesub1dd 9947 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  5 )  <_  ( N  -  5 ) )
108 lediv1 10186 . . . . . . . . . . 11  |-  ( ( ( ( |_ `  N )  -  5 )  e.  RR  /\  ( N  -  5
)  e.  RR  /\  ( 6  e.  RR  /\  0  <  6 ) )  ->  ( (
( |_ `  N
)  -  5 )  <_  ( N  - 
5 )  <->  ( (
( |_ `  N
)  -  5 )  /  6 )  <_ 
( ( N  - 
5 )  /  6
) ) )
10971, 84, 97, 99, 108syl112anc 1222 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
5 )  <_  ( N  -  5 )  <-> 
( ( ( |_
`  N )  - 
5 )  /  6
)  <_  ( ( N  -  5 )  /  6 ) ) )
110107, 109mpbid 210 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
5 )  /  6
)  <_  ( ( N  -  5 )  /  6 ) )
11175, 73, 86, 105, 110letrd 9520 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  <_  ( ( N  -  5 )  /  6 ) )
11275, 86, 92, 111leadd1dd 9945 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  +  1 )  <_  ( (
( N  -  5 )  /  6 )  +  1 ) )
11368, 77, 81, 88, 103, 112le2addd 9949 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  +  ( ( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  +  1 ) )  <_  ( (
( N  -  1 )  /  6 )  +  ( ( ( N  -  5 )  /  6 )  +  1 ) ) )
114 ovex 6111 . . . . . . . . . . . . 13  |-  ( k  mod  6 )  e. 
_V
115114elpr 3890 . . . . . . . . . . . 12  |-  ( ( k  mod  6 )  e.  { 1 ,  5 }  <->  ( (
k  mod  6 )  =  1  \/  (
k  mod  6 )  =  5 ) )
116115a1i 11 . . . . . . . . . . 11  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
( k  mod  6
)  e.  { 1 ,  5 }  <->  ( (
k  mod  6 )  =  1  \/  (
k  mod  6 )  =  5 ) ) )
117116rabbiia 2956 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  =  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( ( k  mod  6 )  =  1  \/  ( k  mod  6 )  =  5 ) }
118 unrab 3616 . . . . . . . . . 10  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } )  =  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( ( k  mod  6 )  =  1  \/  ( k  mod  6 )  =  5 ) }
119117, 118eqtr4i 2461 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  =  ( { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )
120119fveq2i 5689 . . . . . . . 8  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  =  (
# `  ( {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } ) )
121 ssrab2 3432 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  C_  ( 4 ... ( |_ `  N ) )
122 ssfi 7525 . . . . . . . . . 10  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } 
C_  ( 4 ... ( |_ `  N
) ) )  ->  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  e.  Fin )
12310, 121, 122mp2an 672 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  e.  Fin
124 ssrab2 3432 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 }  C_  ( 4 ... ( |_ `  N ) )
125 ssfi 7525 . . . . . . . . . 10  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  5 } 
C_  ( 4 ... ( |_ `  N
) ) )  ->  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 }  e.  Fin )
12610, 124, 125mp2an 672 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 }  e.  Fin
127 inrab 3617 . . . . . . . . . 10  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  i^i  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } )  =  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) }
128 rabeq0 3654 . . . . . . . . . . 11  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) }  =  (/)  <->  A. k  e.  ( 4 ... ( |_ `  N ) )  -.  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) )
129 1lt5 10489 . . . . . . . . . . . . . 14  |-  1  <  5
13091, 129ltneii 9479 . . . . . . . . . . . . 13  |-  1  =/=  5
131 eqtr2 2456 . . . . . . . . . . . . . 14  |-  ( ( ( k  mod  6
)  =  1  /\  ( k  mod  6
)  =  5 )  ->  1  =  5 )
132131necon3ai 2646 . . . . . . . . . . . . 13  |-  ( 1  =/=  5  ->  -.  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) )
133130, 132ax-mp 5 . . . . . . . . . . . 12  |-  -.  (
( k  mod  6
)  =  1  /\  ( k  mod  6
)  =  5 )
134133a1i 11 . . . . . . . . . . 11  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  -.  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) )
135128, 134mprgbir 2781 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( ( k  mod  6
)  =  1  /\  ( k  mod  6
)  =  5 ) }  =  (/)
136127, 135eqtri 2458 . . . . . . . . 9  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  i^i  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } )  =  (/)
137 hashun 12137 . . . . . . . . 9  |-  ( ( { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  e.  Fin  /\  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  5 }  e.  Fin  /\  ( { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  i^i  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )  =  (/) )  ->  ( # `
 ( { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  5 } ) )  =  ( ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } )  +  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } ) ) )
138123, 126, 136, 137mp3an 1314 . . . . . . . 8  |-  ( # `  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } ) )  =  ( (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  1 } )  +  (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } ) )
139120, 138eqtri 2458 . . . . . . 7  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  =  ( ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } )  +  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } ) )
140 elfzelz 11445 . . . . . . . . . . . . 13  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  k  e.  ZZ )
141 nnrp 10992 . . . . . . . . . . . . . . . . 17  |-  ( 6  e.  NN  ->  6  e.  RR+ )
14264, 141ax-mp 5 . . . . . . . . . . . . . . . 16  |-  6  e.  RR+
143 0le1 9855 . . . . . . . . . . . . . . . 16  |-  0  <_  1
144 1lt6 10494 . . . . . . . . . . . . . . . 16  |-  1  <  6
145 modid 11724 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  e.  RR  /\  6  e.  RR+ )  /\  ( 0  <_  1  /\  1  <  6
) )  ->  (
1  mod  6 )  =  1 )
14691, 142, 143, 144, 145mp4an 673 . . . . . . . . . . . . . . 15  |-  ( 1  mod  6 )  =  1
147146eqeq2i 2448 . . . . . . . . . . . . . 14  |-  ( ( k  mod  6 )  =  ( 1  mod  6 )  <->  ( k  mod  6 )  =  1 )
148 1z 10668 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
149 moddvds 13534 . . . . . . . . . . . . . . 15  |-  ( ( 6  e.  NN  /\  k  e.  ZZ  /\  1  e.  ZZ )  ->  (
( k  mod  6
)  =  ( 1  mod  6 )  <->  6  ||  ( k  -  1 ) ) )
15064, 148, 149mp3an13 1305 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  ( 1  mod  6 )  <->  6  ||  ( k  -  1 ) ) )
151147, 150syl5bbr 259 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  1  <->  6 
||  ( k  - 
1 ) ) )
152140, 151syl 16 . . . . . . . . . . . 12  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
( k  mod  6
)  =  1  <->  6 
||  ( k  - 
1 ) ) )
153152rabbiia 2956 . . . . . . . . . . 11  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  =  { k  e.  ( 4 ... ( |_
`  N ) )  |  6  ||  (
k  -  1 ) }
154153fveq2i 5689 . . . . . . . . . 10  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 } )  =  (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  6  ||  (
k  -  1 ) } )
15564a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
6  e.  NN )
156 4nn 10473 . . . . . . . . . . . . 13  |-  4  e.  NN
157156nnzi 10662 . . . . . . . . . . . 12  |-  4  e.  ZZ
158157a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
4  e.  ZZ )
15938oveq1i 6096 . . . . . . . . . . . . . 14  |-  ( 4  -  1 )  =  ( ( 3  +  1 )  -  1 )
160 3cn 10388 . . . . . . . . . . . . . . 15  |-  3  e.  CC
161 ax-1cn 9332 . . . . . . . . . . . . . . 15  |-  1  e.  CC
162 pncan 9608 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  1  e.  CC )  ->  ( ( 3  +  1 )  -  1 )  =  3 )
163160, 161, 162mp2an 672 . . . . . . . . . . . . . 14  |-  ( ( 3  +  1 )  -  1 )  =  3
164159, 163eqtri 2458 . . . . . . . . . . . . 13  |-  ( 4  -  1 )  =  3
165164fveq2i 5689 . . . . . . . . . . . 12  |-  ( ZZ>= `  ( 4  -  1 ) )  =  (
ZZ>= `  3 )
16635, 165syl6eleqr 2529 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  ( ZZ>= `  ( 4  -  1 ) ) )
167148a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
1  e.  ZZ )
168155, 158, 166, 167hashdvds 13842 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  6 
||  ( k  - 
1 ) } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  1 )  /  6 ) ) ) )
169154, 168syl5eq 2482 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  1 )  /  6 ) ) ) )
170 df-3 10373 . . . . . . . . . . . . . . . . 17  |-  3  =  ( 2  +  1 )
171164, 170eqtri 2458 . . . . . . . . . . . . . . . 16  |-  ( 4  -  1 )  =  ( 2  +  1 )
172171oveq1i 6096 . . . . . . . . . . . . . . 15  |-  ( ( 4  -  1 )  -  1 )  =  ( ( 2  +  1 )  -  1 )
173 2cn 10384 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
174 pncan 9608 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  +  1 )  -  1 )  =  2 )
175173, 161, 174mp2an 672 . . . . . . . . . . . . . . 15  |-  ( ( 2  +  1 )  -  1 )  =  2
176172, 175eqtri 2458 . . . . . . . . . . . . . 14  |-  ( ( 4  -  1 )  -  1 )  =  2
177176oveq1i 6096 . . . . . . . . . . . . 13  |-  ( ( ( 4  -  1 )  -  1 )  /  6 )  =  ( 2  /  6
)
178177fveq2i 5689 . . . . . . . . . . . 12  |-  ( |_
`  ( ( ( 4  -  1 )  -  1 )  / 
6 ) )  =  ( |_ `  (
2  /  6 ) )
179 0re 9378 . . . . . . . . . . . . . 14  |-  0  e.  RR
18064nnne0i 10348 . . . . . . . . . . . . . . 15  |-  6  =/=  0
1817, 96, 180redivcli 10090 . . . . . . . . . . . . . 14  |-  ( 2  /  6 )  e.  RR
182 2nn 10471 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
183182nngt0i 10347 . . . . . . . . . . . . . . 15  |-  0  <  2
1847, 96, 183, 98divgt0ii 10242 . . . . . . . . . . . . . 14  |-  0  <  ( 2  /  6
)
185179, 181, 184ltleii 9489 . . . . . . . . . . . . 13  |-  0  <_  ( 2  /  6
)
186 2lt6 10493 . . . . . . . . . . . . . . . 16  |-  2  <  6
187 6cn 10395 . . . . . . . . . . . . . . . . 17  |-  6  e.  CC
188187mulid1i 9380 . . . . . . . . . . . . . . . 16  |-  ( 6  x.  1 )  =  6
189186, 188breqtrri 4312 . . . . . . . . . . . . . . 15  |-  2  <  ( 6  x.  1 )
19096, 98pm3.2i 455 . . . . . . . . . . . . . . . 16  |-  ( 6  e.  RR  /\  0  <  6 )
191 ltdivmul 10196 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  RR  /\  1  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( 2  /  6 )  <  1  <->  2  <  (
6  x.  1 ) ) )
1927, 91, 190, 191mp3an 1314 . . . . . . . . . . . . . . 15  |-  ( ( 2  /  6 )  <  1  <->  2  <  ( 6  x.  1 ) )
193189, 192mpbir 209 . . . . . . . . . . . . . 14  |-  ( 2  /  6 )  <  1
194 1e0p1 10775 . . . . . . . . . . . . . 14  |-  1  =  ( 0  +  1 )
195193, 194breqtri 4310 . . . . . . . . . . . . 13  |-  ( 2  /  6 )  < 
( 0  +  1 )
196 0z 10649 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
197 flbi 11656 . . . . . . . . . . . . . 14  |-  ( ( ( 2  /  6
)  e.  RR  /\  0  e.  ZZ )  ->  ( ( |_ `  ( 2  /  6
) )  =  0  <-> 
( 0  <_  (
2  /  6 )  /\  ( 2  / 
6 )  <  (
0  +  1 ) ) ) )
198181, 196, 197mp2an 672 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( 2  /  6 ) )  =  0  <->  ( 0  <_  ( 2  / 
6 )  /\  (
2  /  6 )  <  ( 0  +  1 ) ) )
199185, 195, 198mpbir2an 911 . . . . . . . . . . . 12  |-  ( |_
`  ( 2  / 
6 ) )  =  0
200178, 199eqtri 2458 . . . . . . . . . . 11  |-  ( |_
`  ( ( ( 4  -  1 )  -  1 )  / 
6 ) )  =  0
201200oveq2i 6097 . . . . . . . . . 10  |-  ( ( |_ `  ( ( ( |_ `  N
)  -  1 )  /  6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  - 
1 )  /  6
) ) )  =  ( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  -  0 )
20266flcld 11640 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  e.  ZZ )
203202zcnd 10740 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  e.  CC )
204203subid1d 9700 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  -  0 )  =  ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) ) )
205201, 204syl5eq 2482 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  -  ( |_ `  ( ( ( 4  -  1 )  -  1 )  / 
6 ) ) )  =  ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) ) )
206169, 205eqtrd 2470 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 } )  =  ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) ) )
207 5nn 10474 . . . . . . . . . . . . . . . . . 18  |-  5  e.  NN
208207nngt0i 10347 . . . . . . . . . . . . . . . . 17  |-  0  <  5
209179, 69, 208ltleii 9489 . . . . . . . . . . . . . . . 16  |-  0  <_  5
210 5lt6 10490 . . . . . . . . . . . . . . . 16  |-  5  <  6
211 modid 11724 . . . . . . . . . . . . . . . 16  |-  ( ( ( 5  e.  RR  /\  6  e.  RR+ )  /\  ( 0  <_  5  /\  5  <  6
) )  ->  (
5  mod  6 )  =  5 )
21269, 142, 209, 210, 211mp4an 673 . . . . . . . . . . . . . . 15  |-  ( 5  mod  6 )  =  5
213212eqeq2i 2448 . . . . . . . . . . . . . 14  |-  ( ( k  mod  6 )  =  ( 5  mod  6 )  <->  ( k  mod  6 )  =  5 )
214207nnzi 10662 . . . . . . . . . . . . . . 15  |-  5  e.  ZZ
215 moddvds 13534 . . . . . . . . . . . . . . 15  |-  ( ( 6  e.  NN  /\  k  e.  ZZ  /\  5  e.  ZZ )  ->  (
( k  mod  6
)  =  ( 5  mod  6 )  <->  6  ||  ( k  -  5 ) ) )
21664, 214, 215mp3an13 1305 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  ( 5  mod  6 )  <->  6  ||  ( k  -  5 ) ) )
217213, 216syl5bbr 259 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  5  <->  6 
||  ( k  - 
5 ) ) )
218140, 217syl 16 . . . . . . . . . . . 12  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
( k  mod  6
)  =  5  <->  6 
||  ( k  - 
5 ) ) )
219218rabbiia 2956 . . . . . . . . . . 11  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 }  =  { k  e.  ( 4 ... ( |_
`  N ) )  |  6  ||  (
k  -  5 ) }
220219fveq2i 5689 . . . . . . . . . 10  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } )  =  (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  6  ||  (
k  -  5 ) } )
221214a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
5  e.  ZZ )
222155, 158, 166, 221hashdvds 13842 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  6 
||  ( k  - 
5 ) } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  5 )  /  6 ) ) ) )
223220, 222syl5eq 2482 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  5 )  /  6 ) ) ) )
224164oveq1i 6096 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  1 )  -  5 )  =  ( 3  -  5 )
225 5cn 10393 . . . . . . . . . . . . . . . . 17  |-  5  e.  CC
226225, 160negsubdi2i 9686 . . . . . . . . . . . . . . . 16  |-  -u (
5  -  3 )  =  ( 3  -  5 )
227 3p2e5 10446 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  +  2 )  =  5
228227oveq1i 6096 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  +  2 )  -  3 )  =  ( 5  -  3 )
229 pncan2 9609 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  e.  CC  /\  2  e.  CC )  ->  ( ( 3  +  2 )  -  3 )  =  2 )
230160, 173, 229mp2an 672 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  +  2 )  -  3 )  =  2
231228, 230eqtr3i 2460 . . . . . . . . . . . . . . . . 17  |-  ( 5  -  3 )  =  2
232231negeqi 9595 . . . . . . . . . . . . . . . 16  |-  -u (
5  -  3 )  =  -u 2
233224, 226, 2323eqtr2i 2464 . . . . . . . . . . . . . . 15  |-  ( ( 4  -  1 )  -  5 )  = 
-u 2
234233oveq1i 6096 . . . . . . . . . . . . . 14  |-  ( ( ( 4  -  1 )  -  5 )  /  6 )  =  ( -u 2  / 
6 )
235 divneg 10018 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  -u (
2  /  6 )  =  ( -u 2  /  6 ) )
236173, 187, 180, 235mp3an 1314 . . . . . . . . . . . . . 14  |-  -u (
2  /  6 )  =  ( -u 2  /  6 )
237234, 236eqtr4i 2461 . . . . . . . . . . . . 13  |-  ( ( ( 4  -  1 )  -  5 )  /  6 )  = 
-u ( 2  / 
6 )
238237fveq2i 5689 . . . . . . . . . . . 12  |-  ( |_
`  ( ( ( 4  -  1 )  -  5 )  / 
6 ) )  =  ( |_ `  -u (
2  /  6 ) )
239181, 91, 193ltleii 9489 . . . . . . . . . . . . . 14  |-  ( 2  /  6 )  <_ 
1
240181, 91lenegi 9877 . . . . . . . . . . . . . 14  |-  ( ( 2  /  6 )  <_  1  <->  -u 1  <_  -u ( 2  /  6
) )
241239, 240mpbi 208 . . . . . . . . . . . . 13  |-  -u 1  <_ 
-u ( 2  / 
6 )
242179, 181ltnegi 9876 . . . . . . . . . . . . . . 15  |-  ( 0  <  ( 2  / 
6 )  <->  -u ( 2  /  6 )  <  -u 0 )
243184, 242mpbi 208 . . . . . . . . . . . . . 14  |-  -u (
2  /  6 )  <  -u 0
244 neg0 9647 . . . . . . . . . . . . . . . 16  |-  -u 0  =  0
245 1pneg1e0 10422 . . . . . . . . . . . . . . . 16  |-  ( 1  +  -u 1 )  =  0
246244, 245eqtr4i 2461 . . . . . . . . . . . . . . 15  |-  -u 0  =  ( 1  + 
-u 1 )
247 neg1cn 10417 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  CC
248247, 161addcomi 9552 . . . . . . . . . . . . . . 15  |-  ( -u
1  +  1 )  =  ( 1  + 
-u 1 )
249246, 248eqtr4i 2461 . . . . . . . . . . . . . 14  |-  -u 0  =  ( -u 1  +  1 )
250243, 249breqtri 4310 . . . . . . . . . . . . 13  |-  -u (
2  /  6 )  <  ( -u 1  +  1 )
251181renegcli 9662 . . . . . . . . . . . . . 14  |-  -u (
2  /  6 )  e.  RR
252 neg1z 10673 . . . . . . . . . . . . . 14  |-  -u 1  e.  ZZ
253 flbi 11656 . . . . . . . . . . . . . 14  |-  ( (
-u ( 2  / 
6 )  e.  RR  /\  -u 1  e.  ZZ )  ->  ( ( |_
`  -u ( 2  / 
6 ) )  = 
-u 1  <->  ( -u 1  <_ 
-u ( 2  / 
6 )  /\  -u (
2  /  6 )  <  ( -u 1  +  1 ) ) ) )
254251, 252, 253mp2an 672 . . . . . . . . . . . . 13  |-  ( ( |_ `  -u (
2  /  6 ) )  =  -u 1  <->  (
-u 1  <_  -u (
2  /  6 )  /\  -u ( 2  / 
6 )  <  ( -u 1  +  1 ) ) )
255241, 250, 254mpbir2an 911 . . . . . . . . . . . 12  |-  ( |_
`  -u ( 2  / 
6 ) )  = 
-u 1
256238, 255eqtri 2458 . . . . . . . . . . 11  |-  ( |_
`  ( ( ( 4  -  1 )  -  5 )  / 
6 ) )  = 
-u 1
257256oveq2i 6097 . . . . . . . . . 10  |-  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  - 
5 )  /  6
) ) )  =  ( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  -u 1
)
25873flcld 11640 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  ZZ )
259258zcnd 10740 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  CC )
260 subneg 9650 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  -u 1
)  =  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  +  1 ) )
261259, 161, 260sylancl 662 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  -u 1
)  =  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  +  1 ) )
262257, 261syl5eq 2482 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  ( |_ `  ( ( ( 4  -  1 )  -  5 )  / 
6 ) ) )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  +  1 ) )
263223, 262eqtrd 2470 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  +  1 ) )
264206, 263oveq12d 6104 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } )  +  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } ) )  =  ( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  +  ( ( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  +  1 ) ) )
265139, 264syl5eq 2482 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  +  ( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  +  1 ) ) )
26682recnd 9404 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  3  <_  N )  ->  N  e.  CC )
2672662timesd 10559 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( 2  x.  N
)  =  ( N  +  N ) )
268 df-6 10376 . . . . . . . . . . . . . 14  |-  6  =  ( 5  +  1 )
269225, 161addcomi 9552 . . . . . . . . . . . . . 14  |-  ( 5  +  1 )  =  ( 1  +  5 )
270268, 269eqtri 2458 . . . . . . . . . . . . 13  |-  6  =  ( 1  +  5 )
271270a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
6  =  ( 1  +  5 ) )
272267, 271oveq12d 6104 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  -  6 )  =  ( ( N  +  N )  -  ( 1  +  5 ) ) )
273 addsub4 9644 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  CC  /\  N  e.  CC )  /\  ( 1  e.  CC  /\  5  e.  CC ) )  -> 
( ( N  +  N )  -  (
1  +  5 ) )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
274161, 225, 273mpanr12 685 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  N  e.  CC )  ->  ( ( N  +  N )  -  (
1  +  5 ) )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
275266, 266, 274syl2anc 661 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  +  N )  -  (
1  +  5 ) )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
276272, 275eqtrd 2470 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  -  6 )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
277276oveq1d 6101 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  - 
6 )  /  6
)  =  ( ( ( N  -  1 )  +  ( N  -  5 ) )  /  6 ) )
278 mulcl 9358 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( 2  x.  N
)  e.  CC )
279173, 266, 278sylancr 663 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( 2  x.  N
)  e.  CC )
280187, 180pm3.2i 455 . . . . . . . . . . . 12  |-  ( 6  e.  CC  /\  6  =/=  0 )
281 divsubdir 10019 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  e.  CC  /\  6  e.  CC  /\  (
6  e.  CC  /\  6  =/=  0 ) )  ->  ( ( ( 2  x.  N )  -  6 )  / 
6 )  =  ( ( ( 2  x.  N )  /  6
)  -  ( 6  /  6 ) ) )
282187, 280, 281mp3an23 1306 . . . . . . . . . . 11  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  -  6 )  /  6 )  =  ( ( ( 2  x.  N )  /  6 )  -  ( 6  /  6
) ) )
283279, 282syl 16 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  - 
6 )  /  6
)  =  ( ( ( 2  x.  N
)  /  6 )  -  ( 6  / 
6 ) ) )
284 3t2e6 10465 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
285160, 173mulcomi 9384 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  ( 2  x.  3 )
286284, 285eqtr3i 2460 . . . . . . . . . . . . 13  |-  6  =  ( 2  x.  3 )
287286oveq2i 6097 . . . . . . . . . . . 12  |-  ( ( 2  x.  N )  /  6 )  =  ( ( 2  x.  N )  /  (
2  x.  3 ) )
288 3ne0 10408 . . . . . . . . . . . . . . 15  |-  3  =/=  0
289160, 288pm3.2i 455 . . . . . . . . . . . . . 14  |-  ( 3  e.  CC  /\  3  =/=  0 )
290 2cnne0 10528 . . . . . . . . . . . . . 14  |-  ( 2  e.  CC  /\  2  =/=  0 )
291 divcan5 10025 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  ( 3  e.  CC  /\  3  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  N )  /  (
2  x.  3 ) )  =  ( N  /  3 ) )
292289, 290, 291mp3an23 1306 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( 2  x.  N
)  /  ( 2  x.  3 ) )  =  ( N  / 
3 ) )
293266, 292syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  /  (
2  x.  3 ) )  =  ( N  /  3 ) )
294287, 293syl5eq 2482 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  /  6
)  =  ( N  /  3 ) )
295187, 180dividi 10056 . . . . . . . . . . . 12  |-  ( 6  /  6 )  =  1
296295a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( 6  /  6
)  =  1 )
297294, 296oveq12d 6104 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  / 
6 )  -  (
6  /  6 ) )  =  ( ( N  /  3 )  -  1 ) )
298283, 297eqtrd 2470 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  - 
6 )  /  6
)  =  ( ( N  /  3 )  -  1 ) )
29979recnd 9404 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  1 )  e.  CC )
30084recnd 9404 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  5 )  e.  CC )
301 divdir 10009 . . . . . . . . . . 11  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  -  5
)  e.  CC  /\  ( 6  e.  CC  /\  6  =/=  0 ) )  ->  ( (
( N  -  1 )  +  ( N  -  5 ) )  /  6 )  =  ( ( ( N  -  1 )  / 
6 )  +  ( ( N  -  5 )  /  6 ) ) )
302280, 301mp3an3 1303 . . . . . . . . . 10  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  -  5
)  e.  CC )  ->  ( ( ( N  -  1 )  +  ( N  - 
5 ) )  / 
6 )  =  ( ( ( N  - 
1 )  /  6
)  +  ( ( N  -  5 )  /  6 ) ) )
303299, 300, 302syl2anc 661 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  -  1 )  +  ( N  -  5 ) )  /  6
)  =  ( ( ( N  -  1 )  /  6 )  +  ( ( N  -  5 )  / 
6 ) ) )
304277, 298, 3033eqtr3d 2478 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  / 
3 )  -  1 )  =  ( ( ( N  -  1 )  /  6 )  +  ( ( N  -  5 )  / 
6 ) ) )
305304oveq1d 6101 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  /  3 )  - 
1 )  +  1 )  =  ( ( ( ( N  - 
1 )  /  6
)  +  ( ( N  -  5 )  /  6 ) )  +  1 ) )
30621recnd 9404 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  /  3
)  e.  CC )
307 npcan 9611 . . . . . . . 8  |-  ( ( ( N  /  3
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( N  /  3 )  - 
1 )  +  1 )  =  ( N  /  3 ) )
308306, 161, 307sylancl 662 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  /  3 )  - 
1 )  +  1 )  =  ( N  /  3 ) )
30981recnd 9404 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
1 )  /  6
)  e.  CC )
31086recnd 9404 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
5 )  /  6
)  e.  CC )
311161a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
1  e.  CC )
312309, 310, 311addassd 9400 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( ( N  -  1 )  /  6 )  +  ( ( N  - 
5 )  /  6
) )  +  1 )  =  ( ( ( N  -  1 )  /  6 )  +  ( ( ( N  -  5 )  /  6 )  +  1 ) ) )
313305, 308, 3123eqtr3d 2478 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  /  3
)  =  ( ( ( N  -  1 )  /  6 )  +  ( ( ( N  -  5 )  /  6 )  +  1 ) ) )
314113, 265, 3133brtr4d 4317 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  <_  ( N  / 
3 ) )
3159, 17, 21, 59, 314letrd 9520 . . . 4  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  <_  ( N  /  3 ) )
3167a1i 11 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
2  e.  RR )
3176, 316, 21lesubaddd 9928 . . . 4  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( (π `  N
)  -  2 )  <_  ( N  / 
3 )  <->  (π `  N
)  <_  ( ( N  /  3 )  +  2 ) ) )
318315, 317mpbid 210 . . 3  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
319318adantlr 714 . 2  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  3  <_  N )  ->  (π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
3205ad2antrr 725 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  e.  RR )
3217a1i 11 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  2  e.  RR )
32220ad2antrr 725 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  ( N  / 
3 )  e.  RR )
323 readdcl 9357 . . . 4  |-  ( ( ( N  /  3
)  e.  RR  /\  2  e.  RR )  ->  ( ( N  / 
3 )  +  2 )  e.  RR )
324322, 7, 323sylancl 662 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  ( ( N  /  3 )  +  2 )  e.  RR )
325 ppiwordi 22480 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR  /\  N  <_  3 )  ->  (π `  N )  <_  (π `  3 ) )
3261, 325mp3an2 1302 . . . . 5  |-  ( ( N  e.  RR  /\  N  <_  3 )  -> 
(π `  N )  <_ 
(π `  3 ) )
327326adantlr 714 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  <_ 
(π `  3 ) )
328327, 24syl6breq 4326 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  <_ 
2 )
329 3pos 10407 . . . . . 6  |-  0  <  3
330 divge0 10190 . . . . . 6  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  0  <_  ( N  /  3 ) )
3311, 329, 330mpanr12 685 . . . . 5  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
0  <_  ( N  /  3 ) )
332331adantr 465 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  0  <_  ( N  /  3 ) )
333 addge02 9842 . . . . 5  |-  ( ( 2  e.  RR  /\  ( N  /  3
)  e.  RR )  ->  ( 0  <_ 
( N  /  3
)  <->  2  <_  (
( N  /  3
)  +  2 ) ) )
3347, 322, 333sylancr 663 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  ( 0  <_ 
( N  /  3
)  <->  2  <_  (
( N  /  3
)  +  2 ) ) )
335332, 334mpbid 210 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  2  <_  (
( N  /  3
)  +  2 ) )
336320, 321, 324, 328, 335letrd 9520 . 2  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
3372, 3, 319, 336lecasei 9472 1  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
(π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   {crab 2714    u. cun 3321    i^i cin 3322    C_ wss 3323   (/)c0 3632   {cpr 3874   class class class wbr 4287   ` cfv 5413  (class class class)co 6086    ~<_ cdom 7300   Fincfn 7302   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   2c2 10363   3c3 10364   4c4 10365   5c5 10366   6c6 10367   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   RR+crp 10983   ...cfz 11429   |_cfl 11632    mod cmo 11700   #chash 12095    || cdivides 13527   Primecprime 13755  πcppi 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-icc 11299  df-fz 11430  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-dvds 13528  df-prm 13756  df-ppi 22417
This theorem is referenced by:  bposlem5  22607
  Copyright terms: Public domain W3C validator