MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppinprm Structured version   Unicode version

Theorem ppinprm 23942
Description: The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppinprm  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  (π `  A ) )

Proof of Theorem ppinprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3689 . . . . . . . . . . 11  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  Prime
2 simprr 764 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
31, 2sseldi 3468 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  Prime )
4 simprl 762 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  -.  ( A  +  1
)  e.  Prime )
5 nelne2 2761 . . . . . . . . . 10  |-  ( ( x  e.  Prime  /\  -.  ( A  +  1
)  e.  Prime )  ->  x  =/=  ( A  +  1 ) )
63, 4, 5syl2anc 665 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  =/=  ( A  +  1 ) )
7 elsn 4016 . . . . . . . . . 10  |-  ( x  e.  { ( A  +  1 ) }  <-> 
x  =  ( A  +  1 ) )
87necon3bbii 2692 . . . . . . . . 9  |-  ( -.  x  e.  { ( A  +  1 ) }  <->  x  =/=  ( A  +  1 ) )
96, 8sylibr 215 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  -.  x  e.  { ( A  +  1 ) } )
10 inss1 3688 . . . . . . . . . . . 12  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  (
2 ... ( A  + 
1 ) )
1110, 2sseldi 3468 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( 2 ... ( A  +  1 ) ) )
12 2z 10969 . . . . . . . . . . . 12  |-  2  e.  ZZ
13 zcn 10942 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  A  e.  CC )
1413adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  CC )
15 ax-1cn 9596 . . . . . . . . . . . . . . 15  |-  1  e.  CC
16 pncan 9880 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
1714, 15, 16sylancl 666 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
( A  +  1 )  -  1 )  =  A )
18 elfzuz2 11802 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 2 ... ( A  +  1 ) )  ->  ( A  +  1 )  e.  ( ZZ>= `  2
) )
19 uz2m1nn 11233 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  ( ZZ>= `  2
)  ->  ( ( A  +  1 )  -  1 )  e.  NN )
2011, 18, 193syl 18 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
( A  +  1 )  -  1 )  e.  NN )
2117, 20eqeltrrd 2518 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  NN )
22 nnuz 11194 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
23 2m1e1 10724 . . . . . . . . . . . . . . 15  |-  ( 2  -  1 )  =  1
2423fveq2i 5884 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( 2  -  1 ) )  =  (
ZZ>= `  1 )
2522, 24eqtr4i 2461 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  ( 2  -  1 ) )
2621, 25syl6eleq 2527 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )
27 fzsuc2 11851 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )  -> 
( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
2812, 26, 27sylancr 667 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
2 ... ( A  + 
1 ) )  =  ( ( 2 ... A )  u.  {
( A  +  1 ) } ) )
2911, 28eleqtrd 2519 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... A )  u.  {
( A  +  1 ) } ) )
30 elun 3612 . . . . . . . . . 10  |-  ( x  e.  ( ( 2 ... A )  u. 
{ ( A  + 
1 ) } )  <-> 
( x  e.  ( 2 ... A )  \/  x  e.  {
( A  +  1 ) } ) )
3129, 30sylib 199 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
x  e.  ( 2 ... A )  \/  x  e.  { ( A  +  1 ) } ) )
3231ord 378 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  ( -.  x  e.  (
2 ... A )  ->  x  e.  { ( A  +  1 ) } ) )
339, 32mt3d 128 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( 2 ... A
) )
3433, 3elind 3656 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... A )  i^i  Prime ) )
3534expr 618 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  ->  x  e.  ( ( 2 ... A )  i^i  Prime ) ) )
3635ssrdv 3476 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) 
C_  ( ( 2 ... A )  i^i 
Prime ) )
37 uzid 11173 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
3837adantr 466 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  A  e.  ( ZZ>= `  A ) )
39 peano2uz 11212 . . . . 5  |-  ( A  e.  ( ZZ>= `  A
)  ->  ( A  +  1 )  e.  ( ZZ>= `  A )
)
40 fzss2 11836 . . . . 5  |-  ( ( A  +  1 )  e.  ( ZZ>= `  A
)  ->  ( 2 ... A )  C_  ( 2 ... ( A  +  1 ) ) )
41 ssrin 3693 . . . . 5  |-  ( ( 2 ... A ) 
C_  ( 2 ... ( A  +  1 ) )  ->  (
( 2 ... A
)  i^i  Prime )  C_  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
4238, 39, 40, 414syl 19 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... A )  i^i  Prime ) 
C_  ( ( 2 ... ( A  + 
1 ) )  i^i 
Prime ) )
4336, 42eqssd 3487 . . 3  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( 2 ... A )  i^i 
Prime ) )
4443fveq2d 5885 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  =  ( # `  ( ( 2 ... A )  i^i  Prime ) ) )
45 peano2z 10978 . . . 4  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
4645adantr 466 . . 3  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( A  +  1 )  e.  ZZ )
47 ppival2 23918 . . 3  |-  ( ( A  +  1 )  e.  ZZ  ->  (π `  ( A  +  1 ) )  =  (
# `  ( (
2 ... ( A  + 
1 ) )  i^i 
Prime ) ) )
4846, 47syl 17 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
) )
49 ppival2 23918 . . 3  |-  ( A  e.  ZZ  ->  (π `  A )  =  (
# `  ( (
2 ... A )  i^i 
Prime ) ) )
5049adantr 466 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  A )  =  ( # `  (
( 2 ... A
)  i^i  Prime ) ) )
5144, 48, 503eqtr4d 2480 1  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  (π `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625    u. cun 3440    i^i cin 3441    C_ wss 3442   {csn 4002   ` cfv 5601  (class class class)co 6305   CCcc 9536   1c1 9539    + caddc 9541    - cmin 9859   NNcn 10609   2c2 10659   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11782   #chash 12512   Primecprime 14593  πcppi 23883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-icc 11642  df-fz 11783  df-fl 12025  df-dvds 14284  df-prm 14594  df-ppi 23889
This theorem is referenced by:  ppip1le  23951  ppi2i  23959  bposlem5  24079
  Copyright terms: Public domain W3C validator