MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppinprm Structured version   Unicode version

Theorem ppinprm 22459
Description: The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppinprm  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  (π `  A ) )

Proof of Theorem ppinprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3564 . . . . . . . . . . 11  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  Prime
2 simprr 756 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
31, 2sseldi 3347 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  Prime )
4 simprl 755 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  -.  ( A  +  1
)  e.  Prime )
5 nelne2 2696 . . . . . . . . . 10  |-  ( ( x  e.  Prime  /\  -.  ( A  +  1
)  e.  Prime )  ->  x  =/=  ( A  +  1 ) )
63, 4, 5syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  =/=  ( A  +  1 ) )
7 elsn 3884 . . . . . . . . . 10  |-  ( x  e.  { ( A  +  1 ) }  <-> 
x  =  ( A  +  1 ) )
87necon3bbii 2633 . . . . . . . . 9  |-  ( -.  x  e.  { ( A  +  1 ) }  <->  x  =/=  ( A  +  1 ) )
96, 8sylibr 212 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  -.  x  e.  { ( A  +  1 ) } )
10 inss1 3563 . . . . . . . . . . . 12  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  (
2 ... ( A  + 
1 ) )
1110, 2sseldi 3347 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( 2 ... ( A  +  1 ) ) )
12 2z 10670 . . . . . . . . . . . 12  |-  2  e.  ZZ
13 zcn 10643 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  A  e.  CC )
1413adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  CC )
15 ax-1cn 9332 . . . . . . . . . . . . . . 15  |-  1  e.  CC
16 pncan 9608 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
1714, 15, 16sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
( A  +  1 )  -  1 )  =  A )
18 elfzuz2 11448 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 2 ... ( A  +  1 ) )  ->  ( A  +  1 )  e.  ( ZZ>= `  2
) )
19 uz2m1nn 10921 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  ( ZZ>= `  2
)  ->  ( ( A  +  1 )  -  1 )  e.  NN )
2011, 18, 193syl 20 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
( A  +  1 )  -  1 )  e.  NN )
2117, 20eqeltrrd 2512 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  NN )
22 nnuz 10888 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
23 2m1e1 10428 . . . . . . . . . . . . . . 15  |-  ( 2  -  1 )  =  1
2423fveq2i 5687 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( 2  -  1 ) )  =  (
ZZ>= `  1 )
2522, 24eqtr4i 2460 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  ( 2  -  1 ) )
2621, 25syl6eleq 2527 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )
27 fzsuc2 11506 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )  -> 
( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
2812, 26, 27sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
2 ... ( A  + 
1 ) )  =  ( ( 2 ... A )  u.  {
( A  +  1 ) } ) )
2911, 28eleqtrd 2513 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... A )  u.  {
( A  +  1 ) } ) )
30 elun 3490 . . . . . . . . . 10  |-  ( x  e.  ( ( 2 ... A )  u. 
{ ( A  + 
1 ) } )  <-> 
( x  e.  ( 2 ... A )  \/  x  e.  {
( A  +  1 ) } ) )
3129, 30sylib 196 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
x  e.  ( 2 ... A )  \/  x  e.  { ( A  +  1 ) } ) )
3231ord 377 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  ( -.  x  e.  (
2 ... A )  ->  x  e.  { ( A  +  1 ) } ) )
339, 32mt3d 125 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( 2 ... A
) )
3433, 3elind 3533 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... A )  i^i  Prime ) )
3534expr 615 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  ->  x  e.  ( ( 2 ... A )  i^i  Prime ) ) )
3635ssrdv 3355 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) 
C_  ( ( 2 ... A )  i^i 
Prime ) )
37 uzid 10867 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
3837adantr 465 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  A  e.  ( ZZ>= `  A ) )
39 peano2uz 10900 . . . . 5  |-  ( A  e.  ( ZZ>= `  A
)  ->  ( A  +  1 )  e.  ( ZZ>= `  A )
)
40 fzss2 11490 . . . . 5  |-  ( ( A  +  1 )  e.  ( ZZ>= `  A
)  ->  ( 2 ... A )  C_  ( 2 ... ( A  +  1 ) ) )
41 ssrin 3568 . . . . 5  |-  ( ( 2 ... A ) 
C_  ( 2 ... ( A  +  1 ) )  ->  (
( 2 ... A
)  i^i  Prime )  C_  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
4238, 39, 40, 414syl 21 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... A )  i^i  Prime ) 
C_  ( ( 2 ... ( A  + 
1 ) )  i^i 
Prime ) )
4336, 42eqssd 3366 . . 3  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( 2 ... A )  i^i 
Prime ) )
4443fveq2d 5688 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  =  ( # `  ( ( 2 ... A )  i^i  Prime ) ) )
45 peano2z 10678 . . . 4  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
4645adantr 465 . . 3  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( A  +  1 )  e.  ZZ )
47 ppival2 22435 . . 3  |-  ( ( A  +  1 )  e.  ZZ  ->  (π `  ( A  +  1 ) )  =  (
# `  ( (
2 ... ( A  + 
1 ) )  i^i 
Prime ) ) )
4846, 47syl 16 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
) )
49 ppival2 22435 . . 3  |-  ( A  e.  ZZ  ->  (π `  A )  =  (
# `  ( (
2 ... A )  i^i 
Prime ) ) )
5049adantr 465 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  A )  =  ( # `  (
( 2 ... A
)  i^i  Prime ) ) )
5144, 48, 503eqtr4d 2479 1  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  (π `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2600    u. cun 3319    i^i cin 3320    C_ wss 3321   {csn 3870   ` cfv 5411  (class class class)co 6086   CCcc 9272   1c1 9275    + caddc 9277    - cmin 9587   NNcn 10314   2c2 10363   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429   #chash 12095   Primecprime 13755  πcppi 22400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-icc 11299  df-fz 11430  df-fl 11634  df-dvds 13528  df-prm 13756  df-ppi 22406
This theorem is referenced by:  ppip1le  22468  ppi2i  22476  bposlem5  22596
  Copyright terms: Public domain W3C validator