MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiltx Structured version   Unicode version

Theorem ppiltx 23315
Description: The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppiltx  |-  ( A  e.  RR+  ->  (π `  A
)  <  A )

Proof of Theorem ppiltx
StepHypRef Expression
1 rpre 11238 . . . . . 6  |-  ( A  e.  RR+  ->  A  e.  RR )
2 ppicl 23269 . . . . . 6  |-  ( A  e.  RR  ->  (π `  A )  e.  NN0 )
31, 2syl 16 . . . . 5  |-  ( A  e.  RR+  ->  (π `  A
)  e.  NN0 )
43nn0red 10865 . . . 4  |-  ( A  e.  RR+  ->  (π `  A
)  e.  RR )
54adantr 465 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (π `  A )  e.  RR )
6 reflcl 11913 . . . . 5  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
71, 6syl 16 . . . 4  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
87adantr 465 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( |_ `  A )  e.  RR )
91adantr 465 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  A  e.  RR )
10 fzfi 12062 . . . . . 6  |-  ( 1 ... ( |_ `  A ) )  e. 
Fin
11 inss1 3723 . . . . . . 7  |-  ( ( 2 ... ( |_
`  A ) )  i^i  Prime )  C_  (
2 ... ( |_ `  A ) )
12 2eluzge1 11139 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  1 )
13 fzss1 11734 . . . . . . . . 9  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( |_ `  A ) )  C_  ( 1 ... ( |_ `  A ) ) )
1412, 13mp1i 12 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (
2 ... ( |_ `  A ) )  C_  ( 1 ... ( |_ `  A ) ) )
15 simpr 461 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( |_ `  A )  e.  NN )
16 nnuz 11129 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
1715, 16syl6eleq 2565 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( |_ `  A )  e.  ( ZZ>= `  1 )
)
18 eluzfz1 11705 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  A ) ) )
1917, 18syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  1  e.  ( 1 ... ( |_ `  A ) ) )
20 1lt2 10714 . . . . . . . . . . . 12  |-  1  <  2
21 1re 9607 . . . . . . . . . . . . 13  |-  1  e.  RR
22 2re 10617 . . . . . . . . . . . . 13  |-  2  e.  RR
2321, 22ltnlei 9717 . . . . . . . . . . . 12  |-  ( 1  <  2  <->  -.  2  <_  1 )
2420, 23mpbi 208 . . . . . . . . . . 11  |-  -.  2  <_  1
25 elfzle1 11701 . . . . . . . . . . 11  |-  ( 1  e.  ( 2 ... ( |_ `  A
) )  ->  2  <_  1 )
2624, 25mto 176 . . . . . . . . . 10  |-  -.  1  e.  ( 2 ... ( |_ `  A ) )
27 nelne1 2796 . . . . . . . . . 10  |-  ( ( 1  e.  ( 1 ... ( |_ `  A ) )  /\  -.  1  e.  (
2 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  A
) )  =/=  (
2 ... ( |_ `  A ) ) )
2819, 26, 27sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (
1 ... ( |_ `  A ) )  =/=  ( 2 ... ( |_ `  A ) ) )
2928necomd 2738 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (
2 ... ( |_ `  A ) )  =/=  ( 1 ... ( |_ `  A ) ) )
30 df-pss 3497 . . . . . . . 8  |-  ( ( 2 ... ( |_
`  A ) ) 
C.  ( 1 ... ( |_ `  A
) )  <->  ( (
2 ... ( |_ `  A ) )  C_  ( 1 ... ( |_ `  A ) )  /\  ( 2 ... ( |_ `  A
) )  =/=  (
1 ... ( |_ `  A ) ) ) )
3114, 29, 30sylanbrc 664 . . . . . . 7  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (
2 ... ( |_ `  A ) )  C.  ( 1 ... ( |_ `  A ) ) )
32 sspsstr 3614 . . . . . . 7  |-  ( ( ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) 
C_  ( 2 ... ( |_ `  A
) )  /\  (
2 ... ( |_ `  A ) )  C.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
2 ... ( |_ `  A ) )  i^i 
Prime )  C.  ( 1 ... ( |_ `  A ) ) )
3311, 31, 32sylancr 663 . . . . . 6  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (
( 2 ... ( |_ `  A ) )  i^i  Prime )  C.  (
1 ... ( |_ `  A ) ) )
34 php3 7715 . . . . . 6  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  (
( 2 ... ( |_ `  A ) )  i^i  Prime )  C.  (
1 ... ( |_ `  A ) ) )  ->  ( ( 2 ... ( |_ `  A ) )  i^i 
Prime )  ~<  ( 1 ... ( |_ `  A ) ) )
3510, 33, 34sylancr 663 . . . . 5  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (
( 2 ... ( |_ `  A ) )  i^i  Prime )  ~<  (
1 ... ( |_ `  A ) ) )
36 fzfi 12062 . . . . . . 7  |-  ( 2 ... ( |_ `  A ) )  e. 
Fin
37 ssfi 7752 . . . . . . 7  |-  ( ( ( 2 ... ( |_ `  A ) )  e.  Fin  /\  (
( 2 ... ( |_ `  A ) )  i^i  Prime )  C_  (
2 ... ( |_ `  A ) ) )  ->  ( ( 2 ... ( |_ `  A ) )  i^i 
Prime )  e.  Fin )
3836, 11, 37mp2an 672 . . . . . 6  |-  ( ( 2 ... ( |_
`  A ) )  i^i  Prime )  e.  Fin
39 hashsdom 12429 . . . . . 6  |-  ( ( ( ( 2 ... ( |_ `  A
) )  i^i  Prime )  e.  Fin  /\  (
1 ... ( |_ `  A ) )  e. 
Fin )  ->  (
( # `  ( ( 2 ... ( |_
`  A ) )  i^i  Prime ) )  < 
( # `  ( 1 ... ( |_ `  A ) ) )  <-> 
( ( 2 ... ( |_ `  A
) )  i^i  Prime ) 
~<  ( 1 ... ( |_ `  A ) ) ) )
4038, 10, 39mp2an 672 . . . . 5  |-  ( (
# `  ( (
2 ... ( |_ `  A ) )  i^i 
Prime ) )  <  ( # `
 ( 1 ... ( |_ `  A
) ) )  <->  ( (
2 ... ( |_ `  A ) )  i^i 
Prime )  ~<  ( 1 ... ( |_ `  A ) ) )
4135, 40sylibr 212 . . . 4  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( # `
 ( ( 2 ... ( |_ `  A ) )  i^i 
Prime ) )  <  ( # `
 ( 1 ... ( |_ `  A
) ) ) )
421flcld 11915 . . . . . . 7  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  ZZ )
43 ppival2 23266 . . . . . . 7  |-  ( ( |_ `  A )  e.  ZZ  ->  (π `  ( |_ `  A
) )  =  (
# `  ( (
2 ... ( |_ `  A ) )  i^i 
Prime ) ) )
4442, 43syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  (π `  ( |_ `  A ) )  =  ( # `  (
( 2 ... ( |_ `  A ) )  i^i  Prime ) ) )
45 ppifl 23298 . . . . . . 7  |-  ( A  e.  RR  ->  (π `  ( |_ `  A
) )  =  (π `  A ) )
461, 45syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  (π `  ( |_ `  A ) )  =  (π `  A ) )
4744, 46eqtr3d 2510 . . . . 5  |-  ( A  e.  RR+  ->  ( # `  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) )  =  (π `  A
) )
4847adantr 465 . . . 4  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( # `
 ( ( 2 ... ( |_ `  A ) )  i^i 
Prime ) )  =  (π `  A ) )
49 rpge0 11244 . . . . . . 7  |-  ( A  e.  RR+  ->  0  <_  A )
50 flge0nn0 11934 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
511, 49, 50syl2anc 661 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
52 hashfz1 12399 . . . . . 6  |-  ( ( |_ `  A )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
5351, 52syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
5453adantr 465 . . . 4  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( # `
 ( 1 ... ( |_ `  A
) ) )  =  ( |_ `  A
) )
5541, 48, 543brtr3d 4482 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (π `  A )  <  ( |_ `  A ) )
56 flle 11916 . . . 4  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
579, 56syl 16 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  ( |_ `  A )  <_  A )
585, 8, 9, 55, 57ltletrd 9753 . 2  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  e.  NN )  ->  (π `  A )  <  A
)
5946adantr 465 . . . 4  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  (π `  ( |_ `  A
) )  =  (π `  A ) )
60 simpr 461 . . . . . 6  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  ( |_ `  A )  =  0 )
6160fveq2d 5876 . . . . 5  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  (π `  ( |_ `  A
) )  =  (π `  0 ) )
62 2pos 10639 . . . . . 6  |-  0  <  2
63 0re 9608 . . . . . . 7  |-  0  e.  RR
64 ppieq0 23314 . . . . . . 7  |-  ( 0  e.  RR  ->  (
(π `  0 )  =  0  <->  0  <  2
) )
6563, 64ax-mp 5 . . . . . 6  |-  ( (π `  0 )  =  0  <->  0  <  2 )
6662, 65mpbir 209 . . . . 5  |-  (π `  0
)  =  0
6761, 66syl6eq 2524 . . . 4  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  (π `  ( |_ `  A
) )  =  0 )
6859, 67eqtr3d 2510 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  (π `  A )  =  0 )
69 rpgt0 11243 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
7069adantr 465 . . 3  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  0  <  A )
7168, 70eqbrtrd 4473 . 2  |-  ( ( A  e.  RR+  /\  ( |_ `  A )  =  0 )  ->  (π `  A )  <  A
)
72 elnn0 10809 . . 3  |-  ( ( |_ `  A )  e.  NN0  <->  ( ( |_
`  A )  e.  NN  \/  ( |_
`  A )  =  0 ) )
7351, 72sylib 196 . 2  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  e.  NN  \/  ( |_ `  A )  =  0 ) )
7458, 71, 73mpjaodan 784 1  |-  ( A  e.  RR+  ->  (π `  A
)  <  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    i^i cin 3480    C_ wss 3481    C. wpss 3482   class class class wbr 4453   ` cfv 5594  (class class class)co 6295    ~< csdm 7527   Fincfn 7528   RRcr 9503   0cc0 9504   1c1 9505    < clt 9640    <_ cle 9641   NNcn 10548   2c2 10597   NN0cn0 10807   ZZcz 10876   ZZ>=cuz 11094   RR+crp 11232   ...cfz 11684   |_cfl 11907   #chash 12385   Primecprime 14092  πcppi 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-icc 11548  df-fz 11685  df-fl 11909  df-hash 12386  df-dvds 13864  df-prm 14093  df-ppi 23237
This theorem is referenced by:  chtppilimlem1  23522
  Copyright terms: Public domain W3C validator