MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppi1i Structured version   Unicode version

Theorem ppi1i 23958
Description: Inference form of ppiprm 23941. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypotheses
Ref Expression
ppi1i.m  |-  M  e. 
NN0
ppi1i.n  |-  N  =  ( M  +  1 )
ppi1i.p  |-  (π `  M
)  =  K
ppi1i.1  |-  N  e. 
Prime
Assertion
Ref Expression
ppi1i  |-  (π `  N
)  =  ( K  +  1 )

Proof of Theorem ppi1i
StepHypRef Expression
1 ppi1i.n . . 3  |-  N  =  ( M  +  1 )
21fveq2i 5884 . 2  |-  (π `  N
)  =  (π `  ( M  +  1 ) )
3 ppi1i.m . . . 4  |-  M  e. 
NN0
43nn0zi 10962 . . 3  |-  M  e.  ZZ
5 ppi1i.1 . . . 4  |-  N  e. 
Prime
61, 5eqeltrri 2514 . . 3  |-  ( M  +  1 )  e. 
Prime
7 ppiprm 23941 . . 3  |-  ( ( M  e.  ZZ  /\  ( M  +  1
)  e.  Prime )  ->  (π `  ( M  + 
1 ) )  =  ( (π `  M )  +  1 ) )
84, 6, 7mp2an 676 . 2  |-  (π `  ( M  +  1 ) )  =  ( (π `  M )  +  1 )
9 ppi1i.p . . 3  |-  (π `  M
)  =  K
109oveq1i 6315 . 2  |-  ( (π `  M )  +  1 )  =  ( K  +  1 )
112, 8, 103eqtri 2462 1  |-  (π `  N
)  =  ( K  +  1 )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1870   ` cfv 5601  (class class class)co 6305   1c1 9539    + caddc 9541   NN0cn0 10869   ZZcz 10937   Primecprime 14593  πcppi 23883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-icc 11642  df-fz 11783  df-fl 12025  df-hash 12513  df-dvds 14284  df-prm 14594  df-ppi 23889
This theorem is referenced by:  ppi2  23960  ppi3  23961
  Copyright terms: Public domain W3C validator