MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poxp Structured version   Unicode version

Theorem poxp 6682
Description: A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
poxp.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
poxp  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y
Allowed substitution hints:    T( x, y)

Proof of Theorem poxp
Dummy variables  a 
b  c  d  e  f  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4855 . . . . . . . 8  |-  ( t  e.  ( A  X.  B )  <->  E. a E. b ( t  = 
<. a ,  b >.  /\  ( a  e.  A  /\  b  e.  B
) ) )
2 elxp 4855 . . . . . . . 8  |-  ( u  e.  ( A  X.  B )  <->  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )
3 elxp 4855 . . . . . . . 8  |-  ( v  e.  ( A  X.  B )  <->  E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) ) )
4 3an6 1299 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  /\  ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
) )  <->  ( (
t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  /\  ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) ) ) )
5 poirr 4650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  Po  A  /\  a  e.  A )  ->  -.  a R a )
65ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  Po  A  ->  (
a  e.  A  ->  -.  a R a ) )
7 poirr 4650 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  Po  B  /\  b  e.  B )  ->  -.  b S b )
87intnand 907 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( S  Po  B  /\  b  e.  B )  ->  -.  ( a  =  a  /\  b S b ) )
98ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( S  Po  B  ->  (
b  e.  B  ->  -.  ( a  =  a  /\  b S b ) ) )
106, 9im2anan9 831 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  ( -.  a R a  /\  -.  ( a  =  a  /\  b S b ) ) ) )
11 ioran 490 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( a R a  \/  ( a  =  a  /\  b S b ) )  <->  ( -.  a R a  /\  -.  ( a  =  a  /\  b S b ) ) )
1210, 11syl6ibr 227 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  -.  ( a R a  \/  ( a  =  a  /\  b S b ) ) ) )
1312imp 429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( a  e.  A  /\  b  e.  B ) )  ->  -.  ( a R a  \/  ( a  =  a  /\  b S b ) ) )
1413intnand 907 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( a  e.  A  /\  b  e.  B ) )  ->  -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) ) )
15143ad2antr1 1153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  -.  ( (
( a  e.  A  /\  a  e.  A
)  /\  ( b  e.  B  /\  b  e.  B ) )  /\  ( a R a  \/  ( a  =  a  /\  b S b ) ) ) )
16 an4 820 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  <->  ( ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  /\  ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
) )  /\  (
( a R c  \/  ( a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) ) )
17 3an6 1299 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
)  <->  ( ( a  e.  A  /\  c  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  d  e.  B  /\  f  e.  B )
) )
18 potr 4651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
( a R c  /\  c R e )  ->  a R
e ) )
19183impia 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
)  /\  ( a R c  /\  c R e ) )  ->  a R e )
2019orcd 392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
)  /\  ( a R c  /\  c R e ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) )
21203expia 1189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
( a R c  /\  c R e )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
2221expdimp 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( c R e  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
23 breq2 4294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( c  =  e  ->  (
a R c  <->  a R
e ) )
2423biimpa 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( c  =  e  /\  a R c )  -> 
a R e )
2524orcd 392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( c  =  e  /\  a R c )  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) )
2625expcom 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a R c  ->  (
c  =  e  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
2726adantrd 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a R c  ->  (
( c  =  e  /\  d S f )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
2827adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( ( c  =  e  /\  d S f )  ->  (
a R e  \/  ( a  =  e  /\  b S f ) ) ) )
2922, 28jaod 380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
3029ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
a R c  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
31 potr 4651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
( b S d  /\  d S f )  ->  b S
f ) )
3231expdimp 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( d S f  ->  b S f ) )
3332anim2d 565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( ( c  =  e  /\  d S f )  ->  (
c  =  e  /\  b S f ) ) )
3433orim2d 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( c R e  \/  ( c  =  e  /\  b S f ) ) ) )
35 breq1 4293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  =  c  ->  (
a R e  <->  c R
e ) )
36 equequ1 1736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  =  c  ->  (
a  =  e  <->  c  =  e ) )
3736anbi1d 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  =  c  ->  (
( a  =  e  /\  b S f )  <->  ( c  =  e  /\  b S f ) ) )
3835, 37orbi12d 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( a  =  c  ->  (
( a R e  \/  ( a  =  e  /\  b S f ) )  <->  ( c R e  \/  (
c  =  e  /\  b S f ) ) ) )
3938imbi2d 316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  c  ->  (
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) )  <->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( c R e  \/  ( c  =  e  /\  b S f ) ) ) ) )
4034, 39syl5ibr 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  c  ->  (
( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B ) )  /\  b S d )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4140expd 436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  c  ->  (
( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
b S d  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
4241com12 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
a  =  c  -> 
( b S d  ->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
4342impd 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
( a  =  c  /\  b S d )  ->  ( (
c R e  \/  ( c  =  e  /\  d S f ) )  ->  (
a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4430, 43jaao 509 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4544impd 431 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
4645an4s 822 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  c  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
4717, 46sylan2b 475 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) )  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
48 an4 820 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) )  <->  ( (
a  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  f  e.  B
) ) )
4948biimpi 194 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) )  -> 
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
) )
50493adant2 1007 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
a  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  f  e.  B
) ) )
5150adantl 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
) )
5247, 51jctild 543 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) )  -> 
( ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
5352adantld 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( (
c  e.  A  /\  e  e.  A )  /\  ( d  e.  B  /\  f  e.  B
) ) )  /\  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  (
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
5416, 53syl5bi 217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
5515, 54jca 532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( -.  (
( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
56 breq12 4295 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  =  <. a ,  b >.  /\  t  =  <. a ,  b
>. )  ->  ( t T t  <->  <. a ,  b >. T <. a ,  b >. )
)
5756anidms 645 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  <. a ,  b
>.  ->  ( t T t  <->  <. a ,  b
>. T <. a ,  b
>. ) )
5857notbid 294 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  <. a ,  b
>.  ->  ( -.  t T t  <->  -.  <. a ,  b >. T <. a ,  b >. )
)
59583ad2ant1 1009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( -.  t T t  <->  -.  <. a ,  b >. T <. a ,  b >. )
)
60 breq12 4295 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d >. )
)
61603adant3 1008 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d
>. ) )
62 breq12 4295 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( u  =  <. c ,  d >.  /\  v  =  <. e ,  f
>. )  ->  ( u T v  <->  <. c ,  d >. T <. e ,  f >. )
)
63623adant1 1006 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( u T v  <->  <. c ,  d >. T <. e ,  f
>. ) )
6461, 63anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( t T u  /\  u T v )  <->  ( <. a ,  b >. T <. c ,  d >.  /\  <. c ,  d >. T <. e ,  f >. )
) )
65 breq12 4295 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  v  =  <. e ,  f
>. )  ->  ( t T v  <->  <. a ,  b >. T <. e ,  f >. )
)
66653adant2 1007 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( t T v  <->  <. a ,  b >. T <. e ,  f
>. ) )
6764, 66imbi12d 320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( t T u  /\  u T v )  -> 
t T v )  <-> 
( ( <. a ,  b >. T <. c ,  d >.  /\  <. c ,  d >. T <. e ,  f >. )  -> 
<. a ,  b >. T <. e ,  f
>. ) ) )
6859, 67anbi12d 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) )  <->  ( -.  <.
a ,  b >. T <. a ,  b
>.  /\  ( ( <.
a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )
) ) )
69 poxp.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
7069xporderlem 6681 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
a ,  b >. T <. a ,  b
>. 
<->  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) ) )
7170notbii 296 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -. 
<. a ,  b >. T <. a ,  b
>. 
<->  -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  ( b  e.  B  /\  b  e.  B
) )  /\  (
a R a  \/  ( a  =  a  /\  b S b ) ) ) )
7269xporderlem 6681 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
7369xporderlem 6681 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
c ,  d >. T <. e ,  f
>. 
<->  ( ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
)  /\  ( c R e  \/  (
c  =  e  /\  d S f ) ) ) )
7472, 73anbi12i 697 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
<. a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  <->  ( ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  /\  ( a R c  \/  ( a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A )  /\  ( d  e.  B  /\  f  e.  B
) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) ) ) )
7569xporderlem 6681 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
a ,  b >. T <. e ,  f
>. 
<->  ( ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
7674, 75imbi12i 326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( <. a ,  b
>. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )  <->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
)  /\  ( c R e  \/  (
c  =  e  /\  d S f ) ) ) )  ->  (
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
7771, 76anbi12i 697 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  <. a ,  b
>. T <. a ,  b
>.  /\  ( ( <.
a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )
)  <->  ( -.  (
( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
7868, 77syl6bb 261 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) )  <->  ( -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) ) )
7955, 78syl5ibr 221 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( R  Po  A  /\  S  Po  B )  /\  (
( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
) )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) )
8079expcomd 438 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) )
8180imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  /\  ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
824, 81sylbi 195 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  /\  ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
83823exp 1186 . . . . . . . . . . . . . . 15  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( (
u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8483com3l 81 . . . . . . . . . . . . . 14  |-  ( ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8584exlimivv 1689 . . . . . . . . . . . . 13  |-  ( E. c E. d ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8685com3l 81 . . . . . . . . . . . 12  |-  ( ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8786exlimivv 1689 . . . . . . . . . . 11  |-  ( E. e E. f ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8887com3l 81 . . . . . . . . . 10  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8988exlimivv 1689 . . . . . . . . 9  |-  ( E. a E. b ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
90893imp 1181 . . . . . . . 8  |-  ( ( E. a E. b
( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) )  /\  E. e E. f ( v  =  <. e ,  f
>.  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) )
911, 2, 3, 90syl3anb 1261 . . . . . . 7  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B )  /\  v  e.  ( A  X.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
92913expia 1189 . . . . . 6  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B ) )  -> 
( v  e.  ( A  X.  B )  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) ) )
9392com3r 79 . . . . 5  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) )  ->  (
v  e.  ( A  X.  B )  -> 
( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) )
9493imp 429 . . . 4  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) ) )  -> 
( v  e.  ( A  X.  B )  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
9594ralrimiv 2796 . . 3  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) ) )  ->  A. v  e.  ( A  X.  B ) ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) )
9695ralrimivva 2806 . 2  |-  ( ( R  Po  A  /\  S  Po  B )  ->  A. t  e.  ( A  X.  B ) A. u  e.  ( A  X.  B ) A. v  e.  ( A  X.  B ) ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) )
97 df-po 4639 . 2  |-  ( T  Po  ( A  X.  B )  <->  A. t  e.  ( A  X.  B
) A. u  e.  ( A  X.  B
) A. v  e.  ( A  X.  B
) ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) )
9896, 97sylibr 212 1  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2713   <.cop 3881   class class class wbr 4290   {copab 4347    Po wpo 4637    X. cxp 4836   ` cfv 5416   1stc1st 6573   2ndc2nd 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-po 4639  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-iota 5379  df-fun 5418  df-fv 5424  df-1st 6575  df-2nd 6576
This theorem is referenced by:  soxp  6683
  Copyright terms: Public domain W3C validator