MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  potr Structured version   Unicode version

Theorem potr 4812
Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
potr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )

Proof of Theorem potr
StepHypRef Expression
1 pocl 4807 . . 3  |-  ( R  Po  A  ->  (
( B  e.  A  /\  C  e.  A  /\  D  e.  A
)  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) )
21imp 429 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) )
32simprd 463 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767   class class class wbr 4447    Po wpo 4798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-po 4800
This theorem is referenced by:  po2nr  4813  po3nr  4814  pofun  4816  sotr  4822  poltletr  5402  poxp  6895  frfi  7765  wemaplem2  7972  sornom  8657  zorn2lem7  8882  pospo  15460  pocnv  28798  predpo  28869  poseq  28938  seqpo  29871
  Copyright terms: Public domain W3C validator