MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  potr Structured version   Unicode version

Theorem potr 4658
Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
potr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )

Proof of Theorem potr
StepHypRef Expression
1 pocl 4653 . . 3  |-  ( R  Po  A  ->  (
( B  e.  A  /\  C  e.  A  /\  D  e.  A
)  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) )
21imp 429 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) )
32simprd 463 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1756   class class class wbr 4297    Po wpo 4644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ral 2725  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-br 4298  df-po 4646
This theorem is referenced by:  po2nr  4659  po3nr  4660  pofun  4662  sotr  4668  poltletr  5238  poxp  6689  frfi  7562  wemaplem2  7766  sornom  8451  zorn2lem7  8676  pospo  15148  pocnv  27579  predpo  27650  poseq  27719  seqpo  28648
  Copyright terms: Public domain W3C validator