MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  postr Structured version   Unicode version

Theorem postr 15225
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b  |-  B  =  ( Base `  K
)
posi.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
postr  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) )

Proof of Theorem postr
StepHypRef Expression
1 posi.b . . 3  |-  B  =  ( Base `  K
)
2 posi.l . . 3  |-  .<_  =  ( le `  K )
31, 2posi 15222 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )
43simp3d 1002 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4390   ` cfv 5516   Basecbs 14276   lecple 14347   Posetcpo 15212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-nul 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-iota 5479  df-fv 5524  df-poset 15218
This theorem is referenced by:  plttr  15242  joinle  15286  meetle  15300  lattr  15328  odupos  15407  omndadd2d  26305  omndadd2rd  26306  omndmul2  26309  atlatle  33271  cvratlem  33371  llncmp  33472  llncvrlpln  33508  lplncmp  33512  lplncvrlvol  33566  lvolcmp  33567  pmaple  33711
  Copyright terms: Public domain W3C validator