Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  posrefOLD Structured version   Visualization version   Unicode version

Theorem posrefOLD 16275
 Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) Obsolete version of posref 16274 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
posi.b
posi.l
Assertion
Ref Expression
posrefOLD

Proof of Theorem posrefOLD
StepHypRef Expression
1 id 22 . . . 4
21, 1, 13jca 1210 . . 3
3 posi.b . . . 4
4 posi.l . . . 4
53, 4posi 16273 . . 3
62, 5sylan2 482 . 2
76simp1d 1042 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 376   w3a 1007   wceq 1452   wcel 1904   class class class wbr 4395  cfv 5589  cbs 15199  cple 15275  cpo 16263 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-nul 4527 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-iota 5553  df-fv 5597  df-poset 16269 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator