MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Structured version   Unicode version

Theorem pospo 15463
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b  |-  B  =  ( Base `  K
)
pospo.l  |-  .<_  =  ( le `  K )
pospo.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pospo  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )

Proof of Theorem pospo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5  |-  .<  =  ( lt `  K )
21pltirr 15453 . . . 4  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  -.  x  .<  x )
3 pospo.b . . . . 5  |-  B  =  ( Base `  K
)
43, 1plttr 15460 . . . 4  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .<  y  /\  y  .<  z )  ->  x  .<  z ) )
52, 4ispod 4808 . . 3  |-  ( K  e.  Poset  ->  .<  Po  B
)
6 relres 5301 . . . . 5  |-  Rel  (  _I  |`  B )
76a1i 11 . . . 4  |-  ( K  e.  Poset  ->  Rel  (  _I  |`  B ) )
8 opabresid 5327 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  x ) }  =  (  _I  |`  B )
98eleq2i 2545 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  B  /\  y  =  x ) }  <->  <. x ,  y >.  e.  (  _I  |`  B ) )
10 opabid 4754 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  B  /\  y  =  x ) }  <->  ( x  e.  B  /\  y  =  x ) )
119, 10bitr3i 251 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  B )  <-> 
( x  e.  B  /\  y  =  x
) )
12 pospo.l . . . . . . . 8  |-  .<_  =  ( le `  K )
133, 12posref 15441 . . . . . . 7  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  x  .<_  x )
14 df-br 4448 . . . . . . . 8  |-  ( x 
.<_  y  <->  <. x ,  y
>.  e.  .<_  )
15 breq2 4451 . . . . . . . 8  |-  ( y  =  x  ->  (
x  .<_  y  <->  x  .<_  x ) )
1614, 15syl5bbr 259 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  y >.  e.  .<_ 
<->  x  .<_  x )
)
1713, 16syl5ibrcom 222 . . . . . 6  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  (
y  =  x  ->  <. x ,  y >.  e.  .<_  ) )
1817expimpd 603 . . . . 5  |-  ( K  e.  Poset  ->  ( (
x  e.  B  /\  y  =  x )  -> 
<. x ,  y >.  e.  .<_  ) )
1911, 18syl5bi 217 . . . 4  |-  ( K  e.  Poset  ->  ( <. x ,  y >.  e.  (  _I  |`  B )  -> 
<. x ,  y >.  e.  .<_  ) )
207, 19relssdv 5095 . . 3  |-  ( K  e.  Poset  ->  (  _I  |`  B )  C_  .<_  )
215, 20jca 532 . 2  |-  ( K  e.  Poset  ->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) )
22 elex 3122 . . . . 5  |-  ( K  e.  V  ->  K  e.  _V )
2322adantr 465 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  K  e.  _V )
243a1i 11 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  B  =  ( Base `  K ) )
2512a1i 11 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  .<_  =  ( le `  K ) )
26 equid 1740 . . . . . 6  |-  x  =  x
27 simpr 461 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x  e.  B )
28 resieq 5284 . . . . . . 7  |-  ( ( x  e.  B  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  <->  x  =  x ) )
2927, 27, 28syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  <->  x  =  x ) )
3026, 29mpbiri 233 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x (  _I  |`  B ) x )
31 simplrr 760 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  (  _I  |`  B ) 
C_  .<_  )
3231ssbrd 4488 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  ->  x  .<_  x ) )
3330, 32mpd 15 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x  .<_  x )
343, 12, 1pleval2i 15454 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
( x  .<  y  \/  x  =  y
) ) )
35343adant1 1014 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
( x  .<  y  \/  x  =  y
) ) )
363, 12, 1pleval2i 15454 . . . . . . 7  |-  ( ( y  e.  B  /\  x  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
3736ancoms 453 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
38373adant1 1014 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
39 simprl 755 . . . . . . . 8  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  .<  Po  B )
40 po2nr 4813 . . . . . . . . 9  |-  ( ( 
.<  Po  B  /\  (
x  e.  B  /\  y  e.  B )
)  ->  -.  (
x  .<  y  /\  y  .<  x ) )
41403impb 1192 . . . . . . . 8  |-  ( ( 
.<  Po  B  /\  x  e.  B  /\  y  e.  B )  ->  -.  ( x  .<  y  /\  y  .<  x ) )
4239, 41syl3an1 1261 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  -.  ( x  .<  y  /\  y  .<  x
) )
4342pm2.21d 106 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<  y  /\  y  .<  x
)  ->  x  =  y ) )
44 simpl 457 . . . . . . 7  |-  ( ( x  =  y  /\  y  .<  x )  ->  x  =  y )
4544a1i 11 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  =  y  /\  y  .<  x )  ->  x  =  y ) )
46 simpr 461 . . . . . . . 8  |-  ( ( x  .<  y  /\  y  =  x )  ->  y  =  x )
4746eqcomd 2475 . . . . . . 7  |-  ( ( x  .<  y  /\  y  =  x )  ->  x  =  y )
4847a1i 11 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<  y  /\  y  =  x )  ->  x  =  y ) )
49 simpl 457 . . . . . . 7  |-  ( ( x  =  y  /\  y  =  x )  ->  x  =  y )
5049a1i 11 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  =  y  /\  y  =  x )  ->  x  =  y ) )
5143, 45, 48, 50ccased 945 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( ( x 
.<  y  \/  x  =  y )  /\  ( y  .<  x  \/  y  =  x
) )  ->  x  =  y ) )
5235, 38, 51syl2and 483 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) )
53 simpr1 1002 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  e.  B )
54 simpr2 1003 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  y  e.  B )
5553, 54, 34syl2anc 661 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .<_  y  ->  (
x  .<  y  \/  x  =  y ) ) )
56 simpr3 1004 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  z  e.  B )
573, 12, 1pleval2i 15454 . . . . . 6  |-  ( ( y  e.  B  /\  z  e.  B )  ->  ( y  .<_  z  -> 
( y  .<  z  \/  y  =  z
) ) )
5854, 56, 57syl2anc 661 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
y  .<_  z  ->  (
y  .<  z  \/  y  =  z ) ) )
59 potr 4812 . . . . . . . 8  |-  ( ( 
.<  Po  B  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .<  y  /\  y  .<  z )  ->  x  .<  z ) )
6039, 59sylan 471 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  .<  z )  ->  x  .<  z
) )
61 simpll 753 . . . . . . . 8  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  K  e.  V )
6212, 1pltle 15451 . . . . . . . 8  |-  ( ( K  e.  V  /\  x  e.  B  /\  z  e.  B )  ->  ( x  .<  z  ->  x  .<_  z )
)
6361, 53, 56, 62syl3anc 1228 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .<  z  ->  x  .<_  z ) )
6460, 63syld 44 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  .<  z )  ->  x  .<_  z ) )
65 breq1 4450 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .<  z  <->  y  .<  z ) )
6665biimpar 485 . . . . . . 7  |-  ( ( x  =  y  /\  y  .<  z )  ->  x  .<  z )
6766, 63syl5 32 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  =  y  /\  y  .<  z
)  ->  x  .<_  z ) )
68 breq2 4451 . . . . . . . 8  |-  ( y  =  z  ->  (
x  .<  y  <->  x  .<  z ) )
6968biimpac 486 . . . . . . 7  |-  ( ( x  .<  y  /\  y  =  z )  ->  x  .<  z )
7069, 63syl5 32 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  =  z
)  ->  x  .<_  z ) )
7153, 33syldan 470 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  .<_  x )
72 eqtr 2493 . . . . . . . 8  |-  ( ( x  =  y  /\  y  =  z )  ->  x  =  z )
7372breq2d 4459 . . . . . . 7  |-  ( ( x  =  y  /\  y  =  z )  ->  ( x  .<_  x  <->  x  .<_  z ) )
7471, 73syl5ibcom 220 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  =  y  /\  y  =  z )  ->  x  .<_  z ) )
7564, 67, 70, 74ccased 945 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  .<  y  \/  x  =  y )  /\  ( y 
.<  z  \/  y  =  z ) )  ->  x  .<_  z ) )
7655, 58, 75syl2and 483 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )
7723, 24, 25, 33, 52, 76isposd 15445 . . 3  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  K  e.  Poset )
7877ex 434 . 2  |-  ( K  e.  V  ->  (
(  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  )  ->  K  e.  Poset ) )
7921, 78impbid2 204 1  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113    C_ wss 3476   <.cop 4033   class class class wbr 4447   {copab 4504    _I cid 4790    Po wpo 4798    |` cres 5001   Rel wrel 5004   ` cfv 5588   Basecbs 14493   lecple 14565   Posetcpo 15430   ltcplt 15431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-res 5011  df-iota 5551  df-fun 5590  df-fv 5596  df-poset 15436  df-plt 15448
This theorem is referenced by:  tosso  15526
  Copyright terms: Public domain W3C validator