MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posdif Structured version   Unicode version

Theorem posdif 9824
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 9665 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
21ancoms 453 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 simpl 457 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
4 ltaddpos 9821 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
52, 3, 4syl2anc 661 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
6 recn 9364 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
7 recn 9364 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
8 pncan3 9610 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
96, 7, 8syl2an 477 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( B  -  A ) )  =  B )
109breq2d 4299 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  ( A  +  ( B  -  A ) )  <->  A  <  B ) )
115, 10bitr2d 254 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4287  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274    + caddc 9277    < clt 9410    - cmin 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-ltxr 9415  df-sub 9589  df-neg 9590
This theorem is referenced by:  posdifi  9882  posdifd  9918  nnsub  10352  nn0sub  10622  znnsub  10683  rpnnen1lem5  10975  difrp  11016  qbtwnre  11161  expnbnd  11985  expmulnbnd  11988  swrd0  12319  swrdccatin12lem3  12373  eflt  13393  cos01gt0  13467  ndvdsadd  13604  nn0seqcvgd  13737  cshwshashlem2  14115  dvcvx  21467  abelthlem7  21878  sinq12gt0  21944  cosq14gt0  21947  cosne0  21961  tanregt0  21970  logdivlti  22044  logcnlem4  22065  scvxcvx  22354  perfectlem2  22544  rplogsumlem2  22709  dchrisum0flblem1  22732  mblfinlem3  28383  mblfinlem4  28384  dvasin  28433  geomcau  28608  bfp  28676  eluzgtdifelfzo  30172  clwlkisclwwlklem2fv2  30398  numclwwlkovf2ex  30632
  Copyright terms: Public domain W3C validator