MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posasymb Structured version   Visualization version   Unicode version

Theorem posasymb 16198
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
posi.b  |-  B  =  ( Base `  K
)
posi.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
posasymb  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  Y  .<_  X )  <->  X  =  Y ) )

Proof of Theorem posasymb
StepHypRef Expression
1 simp1 1008 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Poset )
2 simp2 1009 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 1010 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 posi.b . . . . 5  |-  B  =  ( Base `  K
)
5 posi.l . . . . 5  |-  .<_  =  ( le `  K )
64, 5posi 16195 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Y )  ->  X  .<_  Y ) ) )
71, 2, 3, 3, 6syl13anc 1270 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  X  /\  (
( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Y )  ->  X  .<_  Y ) ) )
87simp2d 1021 . 2  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )
)
94, 5posref 16196 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  X  .<_  X )
10 breq2 4406 . . . . 5  |-  ( X  =  Y  ->  ( X  .<_  X  <->  X  .<_  Y ) )
119, 10syl5ibcom 224 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  ( X  =  Y  ->  X 
.<_  Y ) )
12 breq1 4405 . . . . 5  |-  ( X  =  Y  ->  ( X  .<_  X  <->  Y  .<_  X ) )
139, 12syl5ibcom 224 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  ( X  =  Y  ->  Y 
.<_  X ) )
1411, 13jcad 536 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  ( X  =  Y  ->  ( X  .<_  Y  /\  Y  .<_  X ) ) )
15143adant3 1028 . 2  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  Y  ->  ( X  .<_  Y  /\  Y  .<_  X ) ) )
168, 15impbid 194 1  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  Y  .<_  X )  <->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   class class class wbr 4402   ` cfv 5582   Basecbs 15121   lecple 15197   Posetcpo 16185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-nul 4534
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-iota 5546  df-fv 5590  df-preset 16173  df-poset 16191
This theorem is referenced by:  pltnle  16212  pltval3  16213  lublecllem  16234  latasymb  16300  latleeqj1  16309  latleeqm1  16325  odupos  16381  poslubmo  16392  posglbmo  16393  posrasymb  28418  archirngz  28506  archiabllem1a  28508  ople0  32753  op1le  32758  atlle0  32871
  Copyright terms: Public domain W3C validator