Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Unicode version

Theorem polval2N 33440
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u  |-  U  =  ( lub `  K
)
polval2.o  |-  ._|_  =  ( oc `  K )
polval2.a  |-  A  =  ( Atoms `  K )
polval2.m  |-  M  =  ( pmap `  K
)
polval2.p  |-  P  =  ( _|_P `  K )
Assertion
Ref Expression
polval2N  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )

Proof of Theorem polval2N
Dummy variables  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3  |-  ._|_  =  ( oc `  K )
2 polval2.a . . 3  |-  A  =  ( Atoms `  K )
3 polval2.m . . 3  |-  M  =  ( pmap `  K
)
4 polval2.p . . 3  |-  P  =  ( _|_P `  K )
51, 2, 3, 4polvalN 33439 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
6 hlop 32897 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
76ad2antrr 730 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  K  e.  OP )
8 ssel2 3459 . . . . . . 7  |-  ( ( X  C_  A  /\  p  e.  X )  ->  p  e.  A )
98adantll 718 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  p  e.  A )
10 eqid 2422 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1110, 2atbase 32824 . . . . . 6  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
129, 11syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  p  e.  ( Base `  K )
)
1310, 1opoccl 32729 . . . . 5  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  -> 
(  ._|_  `  p )  e.  ( Base `  K
) )
147, 12, 13syl2anc 665 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  (  ._|_  `  p )  e.  (
Base `  K )
)
1514ralrimiva 2836 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  A. p  e.  X  (  ._|_  `  p )  e.  ( Base `  K
) )
16 eqid 2422 . . . 4  |-  ( glb `  K )  =  ( glb `  K )
1710, 16, 2, 3pmapglb2xN 33306 . . 3  |-  ( ( K  e.  HL  /\  A. p  e.  X  ( 
._|_  `  p )  e.  ( Base `  K
) )  ->  ( M `  ( ( glb `  K ) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p
) } ) )  =  ( A  i^i  |^|_
p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
1815, 17syldan 472 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } ) )  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
19 polval2.u . . . . . 6  |-  U  =  ( lub `  K
)
2010, 19, 16, 1glbconxN 32912 . . . . 5  |-  ( ( K  e.  HL  /\  A. p  e.  X  ( 
._|_  `  p )  e.  ( Base `  K
) )  ->  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) ) )
2115, 20syldan 472 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) ) )
2210, 1opococ 32730 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  -> 
(  ._|_  `  (  ._|_  `  p ) )  =  p )
237, 12, 22syl2anc 665 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  (  ._|_  `  (  ._|_  `  p ) )  =  p )
2423eqeq2d 2436 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  ( x  =  (  ._|_  `  (  ._|_  `  p ) )  <-> 
x  =  p ) )
2524rexbidva 2933 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( E. p  e.  X  x  =  ( 
._|_  `  (  ._|_  `  p
) )  <->  E. p  e.  X  x  =  p ) )
2625abbidv 2553 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) }  =  { x  |  E. p  e.  X  x  =  p }
)
27 df-rex 2777 . . . . . . . . . 10  |-  ( E. p  e.  X  x  =  p  <->  E. p
( p  e.  X  /\  x  =  p
) )
28 equcom 1848 . . . . . . . . . . . . 13  |-  ( x  =  p  <->  p  =  x )
2928anbi2i 698 . . . . . . . . . . . 12  |-  ( ( p  e.  X  /\  x  =  p )  <->  ( p  e.  X  /\  p  =  x )
)
30 ancom 451 . . . . . . . . . . . 12  |-  ( ( p  e.  X  /\  p  =  x )  <->  ( p  =  x  /\  p  e.  X )
)
3129, 30bitri 252 . . . . . . . . . . 11  |-  ( ( p  e.  X  /\  x  =  p )  <->  ( p  =  x  /\  p  e.  X )
)
3231exbii 1712 . . . . . . . . . 10  |-  ( E. p ( p  e.  X  /\  x  =  p )  <->  E. p
( p  =  x  /\  p  e.  X
) )
33 vex 3083 . . . . . . . . . . 11  |-  x  e. 
_V
34 eleq1 2495 . . . . . . . . . . 11  |-  ( p  =  x  ->  (
p  e.  X  <->  x  e.  X ) )
3533, 34ceqsexv 3118 . . . . . . . . . 10  |-  ( E. p ( p  =  x  /\  p  e.  X )  <->  x  e.  X )
3627, 32, 353bitri 274 . . . . . . . . 9  |-  ( E. p  e.  X  x  =  p  <->  x  e.  X )
3736abbii 2551 . . . . . . . 8  |-  { x  |  E. p  e.  X  x  =  p }  =  { x  |  x  e.  X }
38 abid2 2558 . . . . . . . 8  |-  { x  |  x  e.  X }  =  X
3937, 38eqtri 2451 . . . . . . 7  |-  { x  |  E. p  e.  X  x  =  p }  =  X
4026, 39syl6eq 2479 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) }  =  X )
4140fveq2d 5885 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  {
x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } )  =  ( U `
 X ) )
4241fveq2d 5885 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) )  =  (  ._|_  `  ( U `
 X ) ) )
4321, 42eqtrd 2463 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  X )
) )
4443fveq2d 5885 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } ) )  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )
455, 18, 443eqtr2d 2469 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872   {cab 2407   A.wral 2771   E.wrex 2772    i^i cin 3435    C_ wss 3436   |^|_ciin 4300   ` cfv 5601   Basecbs 15120   occoc 15197   lubclub 16186   glbcglb 16187   OPcops 32707   Atomscatm 32798   HLchlt 32885   pmapcpmap 33031   _|_PcpolN 33436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-riotaBAD 32494
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-undef 7031  df-preset 16172  df-poset 16190  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-ats 32802  df-hlat 32886  df-pmap 33038  df-polarityN 33437
This theorem is referenced by:  polsubN  33441  pol1N  33444  polpmapN  33446  2polvalN  33448  3polN  33450  poldmj1N  33462  pnonsingN  33467  ispsubcl2N  33481  polsubclN  33486  poml4N  33487
  Copyright terms: Public domain W3C validator