MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poltletr Structured version   Unicode version

Theorem poltletr 5344
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 5343 . . . . 5  |-  ( C  e.  X  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
213ad2ant3 1011 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( B ( R  u.  _I  ) C  <-> 
( B R C  \/  B  =  C ) ) )
32adantl 466 . . 3  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
43anbi2d 703 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  <->  ( A R B  /\  ( B R C  \/  B  =  C ) ) ) )
5 potr 4764 . . . . 5  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
65com12 31 . . . 4  |-  ( ( A R B  /\  B R C )  -> 
( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
7 breq2 4407 . . . . . 6  |-  ( B  =  C  ->  ( A R B  <->  A R C ) )
87biimpac 486 . . . . 5  |-  ( ( A R B  /\  B  =  C )  ->  A R C )
98a1d 25 . . . 4  |-  ( ( A R B  /\  B  =  C )  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
106, 9jaodan 783 . . 3  |-  ( ( A R B  /\  ( B R C  \/  B  =  C )
)  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  A R C ) )
1110com12 31 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  ( B R C  \/  B  =  C ) )  ->  A R C ) )
124, 11sylbid 215 1  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    u. cun 3437   class class class wbr 4403    _I cid 4742    Po wpo 4750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-id 4747  df-po 4752  df-xp 4957  df-rel 4958
This theorem is referenced by:  soltmin  5348
  Copyright terms: Public domain W3C validator