Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon3N Structured version   Unicode version

Theorem polcon3N 34722
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a  |-  A  =  ( Atoms `  K )
2polss.p  |-  ._|_  =  ( _|_P `  K
)
Assertion
Ref Expression
polcon3N  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
)

Proof of Theorem polcon3N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simp3 998 . . 3  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  X  C_  Y )
2 iinss1 4338 . . 3  |-  ( X 
C_  Y  ->  |^|_ p  e.  Y  ( ( pmap `  K ) `  ( ( oc `  K ) `  p
) )  C_  |^|_ p  e.  X  ( ( pmap `  K ) `  ( ( oc `  K ) `  p
) ) )
3 sslin 3724 . . 3  |-  ( |^|_ p  e.  Y  ( (
pmap `  K ) `  ( ( oc `  K ) `  p
) )  C_  |^|_ p  e.  X  ( ( pmap `  K ) `  ( ( oc `  K ) `  p
) )  ->  ( A  i^i  |^|_ p  e.  Y  ( ( pmap `  K
) `  ( ( oc `  K ) `  p ) ) ) 
C_  ( A  i^i  |^|_
p  e.  X  ( ( pmap `  K
) `  ( ( oc `  K ) `  p ) ) ) )
41, 2, 33syl 20 . 2  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  ( A  i^i  |^|_ p  e.  Y  ( ( pmap `  K
) `  ( ( oc `  K ) `  p ) ) ) 
C_  ( A  i^i  |^|_
p  e.  X  ( ( pmap `  K
) `  ( ( oc `  K ) `  p ) ) ) )
5 eqid 2467 . . . 4  |-  ( oc
`  K )  =  ( oc `  K
)
6 2polss.a . . . 4  |-  A  =  ( Atoms `  K )
7 eqid 2467 . . . 4  |-  ( pmap `  K )  =  (
pmap `  K )
8 2polss.p . . . 4  |-  ._|_  =  ( _|_P `  K
)
95, 6, 7, 8polvalN 34710 . . 3  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
(  ._|_  `  Y )  =  ( A  i^i  |^|_
p  e.  Y  ( ( pmap `  K
) `  ( ( oc `  K ) `  p ) ) ) )
1093adant3 1016 . 2  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  (  ._|_  `  Y )  =  ( A  i^i  |^|_ p  e.  Y  ( (
pmap `  K ) `  ( ( oc `  K ) `  p
) ) ) )
11 simp1 996 . . 3  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  K  e.  HL )
12 simp2 997 . . . 4  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  Y  C_  A )
131, 12sstrd 3514 . . 3  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  X  C_  A )
145, 6, 7, 8polvalN 34710 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  =  ( A  i^i  |^|_
p  e.  X  ( ( pmap `  K
) `  ( ( oc `  K ) `  p ) ) ) )
1511, 13, 14syl2anc 661 . 2  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  (  ._|_  `  X )  =  ( A  i^i  |^|_ p  e.  X  ( (
pmap `  K ) `  ( ( oc `  K ) `  p
) ) ) )
164, 10, 153sstr4d 3547 1  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  Y )  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3475    C_ wss 3476   |^|_ciin 4326   ` cfv 5587   occoc 14562   Atomscatm 34069   HLchlt 34156   pmapcpmap 34302   _|_PcpolN 34707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-polarityN 34708
This theorem is referenced by:  2polcon4bN  34723  polcon2N  34724  paddunN  34732
  Copyright terms: Public domain W3C validator