Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointsetN Structured version   Unicode version

Theorem pointsetN 33382
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointset.a  |-  A  =  ( Atoms `  K )
pointset.p  |-  P  =  ( Points `  K )
Assertion
Ref Expression
pointsetN  |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
Distinct variable groups:    p, a, A    K, p
Allowed substitution hints:    B( p, a)    P( p, a)    K( a)

Proof of Theorem pointsetN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2979 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 pointset.p . . 3  |-  P  =  ( Points `  K )
3 fveq2 5689 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 pointset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2491 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65rexeqdv 2922 . . . . 5  |-  ( k  =  K  ->  ( E. a  e.  ( Atoms `  k ) p  =  { a }  <->  E. a  e.  A  p  =  { a } ) )
76abbidv 2555 . . . 4  |-  ( k  =  K  ->  { p  |  E. a  e.  (
Atoms `  k ) p  =  { a } }  =  { p  |  E. a  e.  A  p  =  { a } } )
8 df-pointsN 33143 . . . 4  |-  Points  =  ( k  e.  _V  |->  { p  |  E. a  e.  ( Atoms `  k )
p  =  { a } } )
9 fvex 5699 . . . . . 6  |-  ( Atoms `  K )  e.  _V
104, 9eqeltri 2511 . . . . 5  |-  A  e. 
_V
1110abrexex 6549 . . . 4  |-  { p  |  E. a  e.  A  p  =  { a } }  e.  _V
127, 8, 11fvmpt 5772 . . 3  |-  ( K  e.  _V  ->  ( Points `
 K )  =  { p  |  E. a  e.  A  p  =  { a } }
)
132, 12syl5eq 2485 . 2  |-  ( K  e.  _V  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
141, 13syl 16 1  |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   {cab 2427   E.wrex 2714   _Vcvv 2970   {csn 3875   ` cfv 5416   Atomscatm 32905   PointscpointsN 33136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-pointsN 33143
This theorem is referenced by:  ispointN  33383
  Copyright terms: Public domain W3C validator