Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pocnv Structured version   Unicode version

Theorem pocnv 27708
 Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
pocnv

Proof of Theorem pocnv
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poirr 4750 . . 3
2 vex 3071 . . . . 5
32, 2brcnv 5120 . . . 4
43notbii 296 . . 3
51, 4sylibr 212 . 2
6 3anrev 976 . . . 4
7 potr 4751 . . . 4
86, 7sylan2b 475 . . 3
9 ancom 450 . . . 4
10 vex 3071 . . . . . 6
11 vex 3071 . . . . . 6
1210, 11brcnv 5120 . . . . 5
132, 10brcnv 5120 . . . . 5
1412, 13anbi12i 697 . . . 4
159, 14bitri 249 . . 3
162, 11brcnv 5120 . . 3
178, 15, 163imtr4g 270 . 2
185, 17ispod 4747 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 369   w3a 965   wcel 1758   class class class wbr 4390   wpo 4737  ccnv 4937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pr 4629 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rab 2804  df-v 3070  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-br 4391  df-opab 4449  df-po 4739  df-cnv 4946 This theorem is referenced by:  socnv  27709
 Copyright terms: Public domain W3C validator