MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po3nr Structured version   Unicode version

Theorem po3nr 4760
Description: A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po3nr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )

Proof of Theorem po3nr
StepHypRef Expression
1 po2nr 4759 . . 3  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  D  e.  A
) )  ->  -.  ( B R D  /\  D R B ) )
213adantr2 1159 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R D  /\  D R B ) )
3 df-3an 978 . . 3  |-  ( ( B R C  /\  C R D  /\  D R B )  <->  ( ( B R C  /\  C R D )  /\  D R B ) )
4 potr 4758 . . . 4  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
54anim1d 564 . . 3  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( ( B R C  /\  C R D )  /\  D R B )  ->  ( B R D  /\  D R B ) ) )
63, 5syl5bi 219 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D  /\  D R B )  ->  ( B R D  /\  D R B ) ) )
72, 6mtod 179 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 976    e. wcel 1844   class class class wbr 4397    Po wpo 4744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ral 2761  df-rab 2765  df-v 3063  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-br 4398  df-po 4746
This theorem is referenced by:  so3nr  4771
  Copyright terms: Public domain W3C validator