MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po2nr Structured version   Unicode version

Theorem po2nr 4650
Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po2nr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )

Proof of Theorem po2nr
StepHypRef Expression
1 poirr 4648 . . 3  |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 711 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
3 potr 4649 . . . . . 6  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  B  e.  A
) )  ->  (
( B R C  /\  C R B )  ->  B R B ) )
433exp2 1200 . . . . 5  |-  ( R  Po  A  ->  ( B  e.  A  ->  ( C  e.  A  -> 
( B  e.  A  ->  ( ( B R C  /\  C R B )  ->  B R B ) ) ) ) )
54com34 83 . . . 4  |-  ( R  Po  A  ->  ( B  e.  A  ->  ( B  e.  A  -> 
( C  e.  A  ->  ( ( B R C  /\  C R B )  ->  B R B ) ) ) ) )
65pm2.43d 48 . . 3  |-  ( R  Po  A  ->  ( B  e.  A  ->  ( C  e.  A  -> 
( ( B R C  /\  C R B )  ->  B R B ) ) ) )
76imp32 433 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  /\  C R B )  ->  B R B ) )
82, 7mtod 177 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    e. wcel 1761   class class class wbr 4289    Po wpo 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ral 2718  df-rab 2722  df-v 2972  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-br 4290  df-po 4637
This theorem is referenced by:  po3nr  4651  so2nr  4661  soisoi  6016  wemaplem2  7757  pospo  15139
  Copyright terms: Public domain W3C validator