MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumo1 Structured version   Unicode version

Theorem pntrsumo1 24266
Description: A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrsumo1  |-  ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  O(1)
Distinct variable groups:    n, a, x    R, n, x
Allowed substitution hint:    R( a)

Proof of Theorem pntrsumo1
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 1re 9641 . . . . . . . . . . 11  |-  1  e.  RR
2 elicopnf 11730 . . . . . . . . . . 11  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
31, 2ax-mp 5 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
43simplbi 461 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR )
5 0red 9643 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  0  e.  RR )
6 1red 9657 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  1  e.  RR )
7 0lt1 10135 . . . . . . . . . . 11  |-  0  <  1
87a1i 11 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  0  <  1 )
93simprbi 465 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
105, 6, 4, 8, 9ltletrd 9794 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) +oo )  ->  0  < 
x )
114, 10elrpd 11338 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR+ )
1211ssriv 3474 . . . . . . 7  |-  ( 1 [,) +oo )  C_  RR+
1312a1i 11 . . . . . 6  |-  ( T. 
->  ( 1 [,) +oo )  C_  RR+ )
14 rpssre 11312 . . . . . 6  |-  RR+  C_  RR
1513, 14syl6ss 3482 . . . . 5  |-  ( T. 
->  ( 1 [,) +oo )  C_  RR )
1615resmptd 5176 . . . 4  |-  ( T. 
->  ( ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  |`  (
1 [,) +oo )
)  =  ( x  e.  ( 1 [,) +oo )  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )
17 oveq2 6313 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
1  /  m )  =  ( 1  /  n ) )
18 oveq1 6312 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
1918fveq2d 5885 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) )
2019, 18oveq12d 6323 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
(ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( (ψ `  (
n  -  1 ) )  -  ( n  -  1 ) ) )
2117, 20jca 534 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( 1  /  m
)  =  ( 1  /  n )  /\  ( (ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( (ψ `  (
n  -  1 ) )  -  ( n  -  1 ) ) ) )
22 oveq2 6313 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  (
1  /  m )  =  ( 1  / 
( n  +  1 ) ) )
23 oveq1 6312 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
2423fveq2d 5885 . . . . . . . . . . . . 13  |-  ( m  =  ( n  + 
1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) )
2524, 23oveq12d 6323 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  (
(ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) ) )
2622, 25jca 534 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
( 1  /  m
)  =  ( 1  /  ( n  + 
1 ) )  /\  ( (ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) ) ) )
27 oveq2 6313 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
1  /  m )  =  ( 1  / 
1 ) )
28 1div1e1 10299 . . . . . . . . . . . . 13  |-  ( 1  /  1 )  =  1
2927, 28syl6eq 2486 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
1  /  m )  =  1 )
30 oveq1 6312 . . . . . . . . . . . . . . . . 17  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
31 1m1e0 10678 . . . . . . . . . . . . . . . . 17  |-  ( 1  -  1 )  =  0
3230, 31syl6eq 2486 . . . . . . . . . . . . . . . 16  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
3332fveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  0 ) )
34 2pos 10701 . . . . . . . . . . . . . . . 16  |-  0  <  2
35 0re 9642 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
36 chpeq0 23999 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  RR  ->  (
(ψ `  0 )  =  0  <->  0  <  2 ) )
3735, 36ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( (ψ `  0 )  =  0  <->  0  <  2
)
3834, 37mpbir 212 . . . . . . . . . . . . . . 15  |-  (ψ ` 
0 )  =  0
3933, 38syl6eq 2486 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  0 )
4039, 32oveq12d 6323 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
(ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( 0  -  0 ) )
41 0m0e0 10719 . . . . . . . . . . . . 13  |-  ( 0  -  0 )  =  0
4240, 41syl6eq 2486 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
(ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  0 )
4329, 42jca 534 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
( 1  /  m
)  =  1  /\  ( (ψ `  (
m  -  1 ) )  -  ( m  -  1 ) )  =  0 ) )
44 oveq2 6313 . . . . . . . . . . . 12  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
1  /  m )  =  ( 1  / 
( ( |_ `  x )  +  1 ) ) )
45 oveq1 6312 . . . . . . . . . . . . . 14  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
m  -  1 )  =  ( ( ( |_ `  x )  +  1 )  - 
1 ) )
4645fveq2d 5885 . . . . . . . . . . . . 13  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )
4746, 45oveq12d 6323 . . . . . . . . . . . 12  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
(ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) )  -  ( ( ( |_ `  x
)  +  1 )  -  1 ) ) )
4844, 47jca 534 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
( 1  /  m
)  =  ( 1  /  ( ( |_
`  x )  +  1 ) )  /\  ( (ψ `  ( m  -  1 ) )  -  ( m  - 
1 ) )  =  ( (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) )  -  ( ( ( |_ `  x
)  +  1 )  -  1 ) ) ) )
4911rprege0d 11348 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) +oo )  ->  ( x  e.  RR  /\  0  <_  x ) )
50 flge0nn0 12051 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
5149, 50syl 17 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) +oo )  ->  ( |_
`  x )  e. 
NN0 )
52 nn0p1nn 10909 . . . . . . . . . . . . 13  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
5351, 52syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
54 nnuz 11194 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
5553, 54syl6eleq 2527 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( |_ `  x )  +  1 )  e.  ( ZZ>= `  1 )
)
56 elfznn 11826 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( ( |_ `  x )  +  1 ) )  ->  m  e.  NN )
5756adantl 467 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  m  e.  NN )
5857nnrecred 10655 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  ( 1  /  m )  e.  RR )
5958recnd 9668 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  ( 1  /  m )  e.  CC )
6057nnred 10624 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  m  e.  RR )
61 peano2rem 9940 . . . . . . . . . . . . . . 15  |-  ( m  e.  RR  ->  (
m  -  1 )  e.  RR )
6260, 61syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  ( m  - 
1 )  e.  RR )
63 chpcl 23914 . . . . . . . . . . . . . 14  |-  ( ( m  -  1 )  e.  RR  ->  (ψ `  ( m  -  1 ) )  e.  RR )
6462, 63syl 17 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  (ψ `  (
m  -  1 ) )  e.  RR )
6564, 62resubcld 10046 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  ( (ψ `  ( m  -  1
) )  -  (
m  -  1 ) )  e.  RR )
6665recnd 9668 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1 [,) +oo )  /\  m  e.  ( 1 ... ( ( |_
`  x )  +  1 ) ) )  ->  ( (ψ `  ( m  -  1
) )  -  (
m  -  1 ) )  e.  CC )
6721, 26, 43, 48, 55, 59, 66fsumparts 13844 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( 1  /  n )  x.  (
( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) )  -  ( (ψ `  ( n  -  1
) )  -  (
n  -  1 ) ) ) )  =  ( ( ( ( 1  /  ( ( |_ `  x )  +  1 ) )  x.  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  -  (
1  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( 1  /  ( n  + 
1 ) )  -  ( 1  /  n
) )  x.  (
(ψ `  ( (
n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  - 
1 ) ) ) ) )
684flcld 12031 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) +oo )  ->  ( |_
`  x )  e.  ZZ )
69 fzval3 11980 . . . . . . . . . . . . 13  |-  ( ( |_ `  x )  e.  ZZ  ->  (
1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
7068, 69syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  ( 1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
7170eqcomd 2437 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  ->  ( 1..^ ( ( |_ `  x )  +  1 ) )  =  ( 1 ... ( |_
`  x ) ) )
72 elfznn 11826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
7372adantl 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
7473nncnd 10625 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
75 ax-1cn 9596 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
76 pncan 9880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
7774, 75, 76sylancl 666 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
7873nnred 10624 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
7977, 78eqeltrd 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  - 
1 )  e.  RR )
80 chpcl 23914 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  +  1 )  -  1 )  e.  RR  ->  (ψ `  ( ( n  + 
1 )  -  1 ) )  e.  RR )
8179, 80syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  e.  RR )
8281recnd 9668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  e.  CC )
8379recnd 9668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  - 
1 )  e.  CC )
84 peano2rem 9940 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
8578, 84syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  - 
1 )  e.  RR )
86 chpcl 23914 . . . . . . . . . . . . . . . . 17  |-  ( ( n  -  1 )  e.  RR  ->  (ψ `  ( n  -  1 ) )  e.  RR )
8785, 86syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  RR )
8887recnd 9668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  CC )
89 1cnd 9658 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
9074, 89subcld 9985 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  - 
1 )  e.  CC )
9182, 83, 88, 90sub4d 10034 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (
( n  +  1 )  -  1 ) )  -  ( (ψ `  ( n  -  1 ) )  -  (
n  -  1 ) ) )  =  ( ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) )  -  ( ( ( n  +  1 )  - 
1 )  -  (
n  -  1 ) ) ) )
92 nnm1nn0 10911 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
9373, 92syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  - 
1 )  e.  NN0 )
94 chpp1 23945 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  -  1 )  e.  NN0  ->  (ψ `  ( ( n  - 
1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  (
( n  -  1 )  +  1 ) ) ) )
9593, 94syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  -  1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) ) )
96 npcan 9883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
9774, 75, 96sylancl 666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  -  1 )  +  1 )  =  n )
9897, 77eqtr4d 2473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  -  1 )  +  1 )  =  ( ( n  +  1 )  -  1 ) )
9998fveq2d 5885 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  -  1 )  +  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) )
10097fveq2d 5885 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  ( (
n  -  1 )  +  1 ) )  =  (Λ `  n
) )
101100oveq2d 6321 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( n  -  1
) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) )  =  ( (ψ `  (
n  -  1 ) )  +  (Λ `  n
) ) )
10295, 99, 1013eqtr3d 2478 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  n ) ) )
103102oveq1d 6320 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  ( ( (ψ `  ( n  -  1
) )  +  (Λ `  n ) )  -  (ψ `  ( n  - 
1 ) ) ) )
104 vmacl 23908 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
10573, 104syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n )  e.  RR )
106105recnd 9668 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n )  e.  CC )
10788, 106pncan2d 9987 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( (ψ `  ( n  -  1 ) )  +  (Λ `  n ) )  -  (ψ `  ( n  - 
1 ) ) )  =  (Λ `  n
) )
108103, 107eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
109 peano2cn 9804 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  CC  ->  (
n  +  1 )  e.  CC )
11074, 109syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  + 
1 )  e.  CC )
111110, 74, 89nnncan2d 10020 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  -  1 )  -  ( n  -  1
) )  =  ( ( n  +  1 )  -  n ) )
112 pncan2 9881 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  n
)  =  1 )
11374, 75, 112sylancl 666 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  -  n )  =  1 )
114111, 113eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  -  1 )  -  ( n  -  1
) )  =  1 )
115108, 114oveq12d 6323 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  -  ( ( ( n  +  1 )  - 
1 )  -  (
n  -  1 ) ) )  =  ( (Λ `  n )  -  1 ) )
11691, 115eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (
( n  +  1 )  -  1 ) )  -  ( (ψ `  ( n  -  1 ) )  -  (
n  -  1 ) ) )  =  ( (Λ `  n )  -  1 ) )
117116oveq2d 6321 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  /  n )  x.  ( ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (
( n  +  1 )  -  1 ) )  -  ( (ψ `  ( n  -  1 ) )  -  (
n  -  1 ) ) ) )  =  ( ( 1  /  n )  x.  (
(Λ `  n )  - 
1 ) ) )
118 peano2rem 9940 . . . . . . . . . . . . . . 15  |-  ( (Λ `  n )  e.  RR  ->  ( (Λ `  n
)  -  1 )  e.  RR )
119105, 118syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n
)  -  1 )  e.  RR )
120119recnd 9668 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n
)  -  1 )  e.  CC )
12173nnne0d 10654 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0
)
122120, 74, 121divrec2d 10386 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( (Λ `  n )  -  1 )  /  n )  =  ( ( 1  /  n )  x.  ( (Λ `  n
)  -  1 ) ) )
123117, 122eqtr4d 2473 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  /  n )  x.  ( ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (
( n  +  1 )  -  1 ) )  -  ( (ψ `  ( n  -  1 ) )  -  (
n  -  1 ) ) ) )  =  ( ( (Λ `  n
)  -  1 )  /  n ) )
12471, 123sumeq12rdv 13751 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( 1  /  n )  x.  (
( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) )  -  ( (ψ `  ( n  -  1
) )  -  (
n  -  1 ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n ) )
12551nn0cnd 10927 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( 1 [,) +oo )  ->  ( |_
`  x )  e.  CC )
126 pncan 9880 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( |_ `  x
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  x )  +  1 )  -  1 )  =  ( |_
`  x ) )
127125, 75, 126sylancl 666 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( |_ `  x
)  +  1 )  -  1 )  =  ( |_ `  x
) )
128127fveq2d 5885 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 1 [,) +oo )  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  ( |_ `  x
) ) )
129 chpfl 23940 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (ψ `  ( |_ `  x
) )  =  (ψ `  x ) )
1304, 129syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 1 [,) +oo )  ->  (ψ `  ( |_ `  x ) )  =  (ψ `  x ) )
131128, 130eqtrd 2470 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 [,) +oo )  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  x ) )
132131oveq1d 6320 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 [,) +oo )  ->  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) )  =  ( (ψ `  x )  -  (
( ( |_ `  x )  +  1 )  -  1 ) ) )
133 chpcl 23914 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
1344, 133syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 1 [,) +oo )  ->  (ψ `  x )  e.  RR )
135134recnd 9668 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 [,) +oo )  ->  (ψ `  x )  e.  CC )
13653nncnd 10625 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( |_ `  x )  +  1 )  e.  CC )
137 1cnd 9658 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 [,) +oo )  ->  1  e.  CC )
138135, 136, 137subsub3d 10015 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 [,) +oo )  ->  ( (ψ `  x )  -  (
( ( |_ `  x )  +  1 )  -  1 ) )  =  ( ( (ψ `  x )  +  1 )  -  ( ( |_ `  x )  +  1 ) ) )
139132, 138eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 [,) +oo )  ->  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) )  =  ( ( (ψ `  x )  +  1 )  -  ( ( |_ `  x )  +  1 ) ) )
140139oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( 1  /  ( ( |_ `  x )  +  1 ) )  x.  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( ( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( ( (ψ `  x )  +  1 )  -  ( ( |_ `  x )  +  1 ) ) ) )
14153nnrecred 10655 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 [,) +oo )  ->  ( 1  /  ( ( |_
`  x )  +  1 ) )  e.  RR )
142141recnd 9668 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 [,) +oo )  ->  ( 1  /  ( ( |_
`  x )  +  1 ) )  e.  CC )
143 peano2cn 9804 . . . . . . . . . . . . . . . 16  |-  ( (ψ `  x )  e.  CC  ->  ( (ψ `  x
)  +  1 )  e.  CC )
144135, 143syl 17 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 [,) +oo )  ->  ( (ψ `  x )  +  1 )  e.  CC )
145142, 144, 136subdid 10073 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( 1  /  ( ( |_ `  x )  +  1 ) )  x.  ( ( (ψ `  x )  +  1 )  -  ( ( |_ `  x )  +  1 ) ) )  =  ( ( ( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( (ψ `  x )  +  1 ) )  -  (
( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( ( |_ `  x )  +  1 ) ) ) )
14653nnne0d 10654 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( |_ `  x )  +  1 )  =/=  0 )
147144, 136, 146divrec2d 10386 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  =  ( ( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( (ψ `  x )  +  1 ) ) )
148147eqcomd 2437 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( 1  /  ( ( |_ `  x )  +  1 ) )  x.  ( (ψ `  x )  +  1 ) )  =  ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) ) )
149136, 146recid2d 10378 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( 1  /  ( ( |_ `  x )  +  1 ) )  x.  ( ( |_
`  x )  +  1 ) )  =  1 )
150148, 149oveq12d 6323 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( (ψ `  x )  +  1 ) )  -  (
( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( ( |_ `  x )  +  1 ) ) )  =  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 ) )
151140, 145, 1503eqtrd 2474 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( 1  /  ( ( |_ `  x )  +  1 ) )  x.  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) )
15275mul01i 9822 . . . . . . . . . . . . . 14  |-  ( 1  x.  0 )  =  0
153152a1i 11 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) +oo )  ->  ( 1  x.  0 )  =  0 )
154151, 153oveq12d 6323 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  -  (
1  x.  0 ) )  =  ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  - 
0 ) )
155 peano2re 9805 . . . . . . . . . . . . . . . . 17  |-  ( (ψ `  x )  e.  RR  ->  ( (ψ `  x
)  +  1 )  e.  RR )
156134, 155syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 [,) +oo )  ->  ( (ψ `  x )  +  1 )  e.  RR )
157156, 53nndivred 10658 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  e.  RR )
158157recnd 9668 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  e.  CC )
159 subcl 9873 . . . . . . . . . . . . . 14  |-  ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  e.  CC  /\  1  e.  CC )  ->  (
( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  e.  CC )
160158, 75, 159sylancl 666 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 )  e.  CC )
161160subid1d 9974 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  - 
0 )  =  ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) )
162154, 161eqtrd 2470 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( 1  /  (
( |_ `  x
)  +  1 ) )  x.  ( (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  -  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  -  (
1  x.  0 ) )  =  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 ) )
163 peano2nn 10621 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
164 nnmulcl 10632 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  NN  /\  ( n  +  1
)  e.  NN )  ->  ( n  x.  ( n  +  1 ) )  e.  NN )
165163, 164mpdan 672 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  x.  ( n  +  1 ) )  e.  NN )
16673, 165syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( n  +  1 ) )  e.  NN )
167166nnrecred 10655 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
( n  x.  (
n  +  1 ) ) )  e.  RR )
168167recnd 9668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
169 nnrp 11311 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  RR+ )
170 pntrval.r . . . . . . . . . . . . . . . . . . . 20  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
171170pntrf 24264 . . . . . . . . . . . . . . . . . . 19  |-  R : RR+
--> RR
172171ffvelrni 6036 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR+  ->  ( R `
 n )  e.  RR )
173169, 172syl 17 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  ( R `  n )  e.  RR )
17473, 173syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  n )  e.  RR )
175174recnd 9668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  n )  e.  CC )
176168, 175mulneg1d 10070 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( -u (
1  /  ( n  x.  ( n  + 
1 ) ) )  x.  ( R `  n ) )  = 
-u ( ( 1  /  ( n  x.  ( n  +  1 ) ) )  x.  ( R `  n
) ) )
17774, 89mulcld 9662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  1 )  e.  CC )
17874, 110mulcld 9662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( n  +  1 ) )  e.  CC )
179166nnne0d 10654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( n  +  1 ) )  =/=  0
)
180110, 177, 178, 179divsubdird 10421 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  -  ( n  x.  1 ) )  / 
( n  x.  (
n  +  1 ) ) )  =  ( ( ( n  + 
1 )  /  (
n  x.  ( n  +  1 ) ) )  -  ( ( n  x.  1 )  /  ( n  x.  ( n  +  1 ) ) ) ) )
18174mulid1d 9659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  1 )  =  n )
182181oveq2d 6321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  -  ( n  x.  1
) )  =  ( ( n  +  1 )  -  n ) )
183182, 113eqtrd 2470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  -  ( n  x.  1
) )  =  1 )
184183oveq1d 6320 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  -  ( n  x.  1 ) )  / 
( n  x.  (
n  +  1 ) ) )  =  ( 1  /  ( n  x.  ( n  + 
1 ) ) ) )
185110mulid1d 9659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  x.  1 )  =  ( n  +  1 ) )
186110, 74mulcomd 9663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  x.  n )  =  ( n  x.  ( n  +  1 ) ) )
187185, 186oveq12d 6323 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  x.  1 )  / 
( ( n  + 
1 )  x.  n
) )  =  ( ( n  +  1 )  /  ( n  x.  ( n  + 
1 ) ) ) )
18873, 163syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  + 
1 )  e.  NN )
189188nnne0d 10654 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  + 
1 )  =/=  0
)
19089, 74, 110, 121, 189divcan5d 10408 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  x.  1 )  / 
( ( n  + 
1 )  x.  n
) )  =  ( 1  /  n ) )
191187, 190eqtr3d 2472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  / 
( n  x.  (
n  +  1 ) ) )  =  ( 1  /  n ) )
19289, 110, 74, 189, 121divcan5d 10408 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  x.  1 )  / 
( n  x.  (
n  +  1 ) ) )  =  ( 1  /  ( n  +  1 ) ) )
193191, 192oveq12d 6323 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( n  +  1 )  /  ( n  x.  ( n  +  1 ) ) )  -  ( ( n  x.  1 )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( ( 1  /  n
)  -  ( 1  /  ( n  + 
1 ) ) ) )
194180, 184, 1933eqtr3d 2478 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
( n  x.  (
n  +  1 ) ) )  =  ( ( 1  /  n
)  -  ( 1  /  ( n  + 
1 ) ) ) )
195194negeqd 9868 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  -u ( 1  / 
( n  x.  (
n  +  1 ) ) )  =  -u ( ( 1  /  n )  -  (
1  /  ( n  +  1 ) ) ) )
19673nnrecred 10655 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
197196recnd 9668 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
198188nnrecred 10655 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
( n  +  1 ) )  e.  RR )
199198recnd 9668 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
( n  +  1 ) )  e.  CC )
200197, 199negsubdi2d 10001 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  -u ( ( 1  /  n )  -  ( 1  /  (
n  +  1 ) ) )  =  ( ( 1  /  (
n  +  1 ) )  -  ( 1  /  n ) ) )
201195, 200eqtr2d 2471 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  /  ( n  + 
1 ) )  -  ( 1  /  n
) )  =  -u ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
20273nnrpd 11339 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
20377, 202eqeltrd 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( n  +  1 )  - 
1 )  e.  RR+ )
204170pntrval 24263 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  +  1 )  -  1 )  e.  RR+  ->  ( R `
 ( ( n  +  1 )  - 
1 ) )  =  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) ) )
205203, 204syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( ( n  + 
1 )  -  1 ) )  =  ( (ψ `  ( (
n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  - 
1 ) ) )
20677fveq2d 5885 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( ( n  + 
1 )  -  1 ) )  =  ( R `  n ) )
207205, 206eqtr3d 2472 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (
( n  +  1 )  -  1 ) )  =  ( R `
 n ) )
208201, 207oveq12d 6323 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( 1  /  ( n  +  1 ) )  -  ( 1  /  n ) )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) ) )  =  ( -u ( 1  /  (
n  x.  ( n  +  1 ) ) )  x.  ( R `
 n ) ) )
209175, 178, 179divrec2d 10386 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  ( ( 1  /  (
n  x.  ( n  +  1 ) ) )  x.  ( R `
 n ) ) )
210209negeqd 9868 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  -u ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  -u ( ( 1  / 
( n  x.  (
n  +  1 ) ) )  x.  ( R `  n )
) )
211176, 208, 2103eqtr4d 2480 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( 1  /  ( n  +  1 ) )  -  ( 1  /  n ) )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  -  1 ) ) )  =  -u (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )
21271, 211sumeq12rdv 13751 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( 1  /  ( n  + 
1 ) )  -  ( 1  /  n
) )  x.  (
(ψ `  ( (
n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  - 
1 ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
-u ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )
213 fzfid 12183 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) +oo )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
214173, 165nndivred 10658 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
21573, 214syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  RR )
216215recnd 9668 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 1 [,) +oo )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
217213, 216fsumneg 13826 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
-u ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  -u sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )
218212, 217eqtrd 2470 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( 1  /  ( n  + 
1 ) )  -  ( 1  /  n
) )  x.  (
(ψ `  ( (
n  +  1 )  -  1 ) )  -  ( ( n  +  1 )  - 
1 ) ) )  =  -u sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )
219162, 218oveq12d 6323 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( ( 1  / 
( ( |_ `  x )  +  1 ) )  x.  (
(ψ `  ( (
( |_ `  x
)  +  1 )  -  1 ) )  -  ( ( ( |_ `  x )  +  1 )  - 
1 ) ) )  -  ( 1  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( 1  /  (
n  +  1 ) )  -  ( 1  /  n ) )  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (
( n  +  1 )  -  1 ) ) ) )  =  ( ( ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  -  1 )  -  -u sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )
22067, 124, 2193eqtr3d 2478 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n )  =  ( ( ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  -  1 )  -  -u sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )
221 fzfid 12183 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
22272adantl 467 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
223222, 214syl 17 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  RR )
224221, 223fsumrecl 13778 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
225224recnd 9668 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
2264, 225syl 17 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
227160, 226subnegd 9992 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  -  -u
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  =  ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
228220, 227eqtrd 2470 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n )  =  ( ( ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  -  1 )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )
229228oveq1d 6320 . . . . . . 7  |-  ( x  e.  ( 1 [,) +oo )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  -  1 )  /  n )  -  (
( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) )  =  ( ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  -  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 ) ) )
230160, 226pncan2d 9987 . . . . . . 7  |-  ( x  e.  ( 1 [,) +oo )  ->  ( ( ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  -  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )
231229, 230eqtrd 2470 . . . . . 6  |-  ( x  e.  ( 1 [,) +oo )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  -  1 )  /  n )  -  (
( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )
232231mpteq2ia 4508 . . . . 5  |-  ( x  e.  ( 1 [,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  -  1 )  /  n )  -  (
( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) ) )  =  ( x  e.  ( 1 [,) +oo )  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )
233 fzfid 12183 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
23472adantl 467 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
235234, 104syl 17 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
236235, 118syl 17 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  -  1 )  e.  RR )
237236, 234nndivred 10658 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  - 
1 )  /  n
)  e.  RR )
238233, 237fsumrecl 13778 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n )  e.  RR )
239 rpre 11308 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
240239adantl 467 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  RR )
241240, 133syl 17 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  (ψ `  x )  e.  RR )
242241, 155syl 17 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  +  1 )  e.  RR )
243 rprege0 11316 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
244243, 50syl 17 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  e. 
NN0 )
245244adantl 467 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  e. 
NN0 )
246245, 52syl 17 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
247242, 246nndivred 10658 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  e.  RR )
248 peano2rem 9940 . . . . . . . 8  |-  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  e.  RR  ->  ( (
( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 )  e.  RR )
249247, 248syl 17 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( ( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) )  - 
1 )  e.  RR )
250 reex 9629 . . . . . . . . . . . 12  |-  RR  e.  _V
251250, 14ssexi 4570 . . . . . . . . . . 11  |-  RR+  e.  _V
252251a1i 11 . . . . . . . . . 10  |-  ( T. 
->  RR+  e.  _V )
253235, 234nndivred 10658 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
254253recnd 9668 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
255233, 254fsumcl 13777 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
256 relogcl 23390 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
257256adantl 467 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
258257recnd 9668 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
259255, 258subcld 9985 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  e.  CC )
260234nnrecred 10655 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
261233, 260fsumrecl 13778 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
262261, 257resubcld 10046 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( 1  /  n )  -  ( log `  x ) )  e.  RR )
263 eqidd 2430 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) ) )
264 eqidd 2430 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  -  ( log `  x ) ) ) )
265252, 259, 262, 263, 264offval2 6562 . . . . . . . . 9  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  oF  -  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( 1  /  n )  -  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  ( log `  x
) ) ) ) )
266260recnd 9668 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
267233, 254, 266fsumsub 13827 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  -  ( 1  /  n ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
) ) )
268235recnd 9668 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
269 1cnd 9658 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
270234nncnd 10625 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
271234nnne0d 10654 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
272268, 269, 270, 271divsubdird 10421 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  - 
1 )  /  n
)  =  ( ( (Λ `  n )  /  n )  -  (
1  /  n ) ) )
273272sumeq2dv 13747 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  -  ( 1  /  n ) ) )
274261recnd 9668 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  e.  CC )
275255, 274, 258nnncan2d 10020 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
) ) )
276267, 273, 2753eqtr4rd 2481 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  -  1 )  /  n ) )
277276mpteq2dva 4512 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  -  1 )  /  n ) ) )
278265, 277eqtrd 2470 . . . . . . . 8  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  oF  -  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( 1  /  n )  -  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n ) ) )
279 vmadivsum 24183 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
28014a1i 11 . . . . . . . . . 10  |-  ( T. 
->  RR+  C_  RR )
281262recnd 9668 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( 1  /  n )  -  ( log `  x ) )  e.  CC )
282 1red 9657 . . . . . . . . . 10  |-  ( T. 
->  1  e.  RR )
283 harmoniclbnd 23799 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( log `  x )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
) )
284283adantl 467 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( log `  x )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
) )
285257, 261, 284abssubge0d 13472 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )
286285adantrr 721 . . . . . . . . . . 11  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  ( log `  x
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )
287239ad2antrl 732 . . . . . . . . . . . . 13  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
288 simprr 764 . . . . . . . . . . . . 13  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
289 harmonicubnd 23800 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  <_  ( ( log `  x )  +  1 ) )
290287, 288, 289syl2anc 665 . . . . . . . . . . . 12  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  <_  ( ( log `  x )  +  1 ) )
291 1red 9657 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  1  e.  RR )
292261, 257, 291lesubadd2d 10211 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( 1  /  n )  -  ( log `  x
) )  <_  1  <->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  <_  ( ( log `  x )  +  1 ) ) )
293292adantrr 721 . . . . . . . . . . . 12  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  -  ( log `  x ) )  <_ 
1  <->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
)  <_  ( ( log `  x )  +  1 ) ) )
294290, 293mpbird 235 . . . . . . . . . . 11  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
)  -  ( log `  x ) )  <_ 
1 )
295286, 294eqbrtrd 4446 . . . . . . . . . 10  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  ( log `  x
) ) )  <_ 
1 )
296280, 281, 282, 282, 295elo1d 13578 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )  e.  O(1) )
297 o1sub 13657 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  -  ( log `  x ) ) )  e.  O(1) )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  oF  -  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( 1  /  n )  -  ( log `  x ) ) ) )  e.  O(1) )
298279, 296, 297sylancr 667 . . . . . . . 8  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  oF  -  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( 1  /  n )  -  ( log `  x ) ) ) )  e.  O(1) )
299278, 298eqeltrrd 2518 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  -  1 )  /  n ) )  e.  O(1) )
300247recnd 9668 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  e.  CC )
301 1cnd 9658 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  1  e.  CC )
302241recnd 9668 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  (ψ `  x )  e.  CC )
303 rpcnne0 11319 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
304303adantl 467 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
305 divdir 10292 . . . . . . . . . . . 12  |-  ( ( (ψ `  x )  e.  CC  /\  1  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  -> 
( ( (ψ `  x )  +  1 )  /  x )  =  ( ( (ψ `  x )  /  x
)  +  ( 1  /  x ) ) )
306302, 301, 304, 305syl3anc 1264 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  /  x )  =  ( ( (ψ `  x
)  /  x )  +  ( 1  /  x ) ) )
307306mpteq2dva 4512 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  +  1 )  /  x ) )  =  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x )  +  ( 1  /  x ) ) ) )
308 simpr 462 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  RR+ )
309241, 308rerpdivcld 11369 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
310 rpreccl 11326 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
311310adantl 467 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
312 eqidd 2430 . . . . . . . . . . . 12  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  =  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) ) )
313 eqidd 2430 . . . . . . . . . . . 12  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  =  ( x  e.  RR+  |->  ( 1  /  x ) ) )
314252, 309, 311, 312, 313offval2 6562 . . . . . . . . . . 11  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x
)  +  ( 1  /  x ) ) ) )
315 chpo1ub 24181 . . . . . . . . . . . 12  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O(1)
316 divrcnv 13888 . . . . . . . . . . . . . 14  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
31775, 316ax-mp 5 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0
318 rlimo1 13658 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )
319317, 318mp1i 13 . . . . . . . . . . . 12  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  e.  O(1) )
320 o1add 13655 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )  ->  ( (
x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
321315, 319, 320sylancr 667 . . . . . . . . . . 11  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
322314, 321eqeltrrd 2518 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x
)  +  ( 1  /  x ) ) )  e.  O(1) )
323307, 322eqeltrd 2517 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  +  1 )  /  x ) )  e.  O(1) )
324242, 308rerpdivcld 11369 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  /  x )  e.  RR )
325 chpge0 23916 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
326240, 325syl 17 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  RR+ )  ->  0  <_ 
(ψ `  x )
)
327241, 326ge0p1rpd 11368 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  +  1 )  e.  RR+ )
328327rprege0d 11348 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  e.  RR  /\  0  <_ 
( (ψ `  x
)  +  1 ) ) )
329246nnrpd 11339 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  RR+ )
330329rpregt0d 11347 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( ( |_ `  x
)  +  1 )  e.  RR  /\  0  <  ( ( |_ `  x )  +  1 ) ) )
331 divge0 10473 . . . . . . . . . . . . 13  |-  ( ( ( ( (ψ `  x )  +  1 )  e.  RR  /\  0  <_  ( (ψ `  x )  +  1 ) )  /\  (
( ( |_ `  x )  +  1 )  e.  RR  /\  0  <  ( ( |_
`  x )  +  1 ) ) )  ->  0  <_  (
( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) ) )
332328, 330, 331syl2anc 665 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  0  <_ 
( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) ) )
333247, 332absidd 13463 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) ) )  =  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) ) )
334324recnd 9668 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  /  x )  e.  CC )
335334abscld 13476 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  ( ( (ψ `  x )  +  1 )  /  x ) )  e.  RR )
336 fllep1 12034 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
337240, 336syl 17 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  <_ 
( ( |_ `  x )  +  1 ) )
338 rpregt0 11315 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
339338adantl 467 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <  x ) )
340327rpregt0d 11347 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  e.  RR  /\  0  < 
( (ψ `  x
)  +  1 ) ) )
341 lediv2 10496 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( ( ( |_ `  x )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  x )  +  1 ) )  /\  (
( (ψ `  x
)  +  1 )  e.  RR  /\  0  <  ( (ψ `  x
)  +  1 ) ) )  ->  (
x  <_  ( ( |_ `  x )  +  1 )  <->  ( (
(ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  <_  (
( (ψ `  x
)  +  1 )  /  x ) ) )
342339, 330, 340, 341syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  <_  ( ( |_
`  x )  +  1 )  <->  ( (
(ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  <_  (
( (ψ `  x
)  +  1 )  /  x ) ) )
343337, 342mpbid 213 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  <_  (
( (ψ `  x
)  +  1 )  /  x ) )
344324leabsd 13455 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  /  x )  <_  ( abs `  ( ( (ψ `  x )  +  1 )  /  x ) ) )
345247, 324, 335, 343, 344letrd 9791 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  +  1 )  / 
( ( |_ `  x )  +  1 ) )  <_  ( abs `  ( ( (ψ `  x )  +  1 )  /  x ) ) )
346333, 345eqbrtrd 4446 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) ) )  <_  ( abs `  ( ( (ψ `  x )  +  1 )  /  x ) ) )
347346adantrr 721 . . . . . . . . 9  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( (ψ `  x
)  +  1 )  /  ( ( |_
`  x )  +  1 ) ) )  <_  ( abs `  (
( (ψ `  x
)  +  1 )  /  x ) ) )
348282, 323, 324, 300, 347o1le 13694 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) ) )  e.  O(1) )
349 o1const 13661 . . . . . . . . . 10  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O(1) )
35014, 75, 349mp2an 676 . . . . . . . . 9  |-  ( x  e.  RR+  |->  1 )  e.  O(1)
351350a1i 11 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR+  |->  1 )  e.  O(1) )
352300, 301, 348, 351o1sub2 13667 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) )  e.  O(1) )
353238, 249, 299, 352o1sub2 13667 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  -  1 )  /  n )  -  ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) ) )  e.  O(1) )
35413, 353o1res2 13605 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 [,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  -  1 )  /  n )  -  ( ( ( (ψ `  x )  +  1 )  /  ( ( |_ `  x )  +  1 ) )  -  1 ) ) )  e.  O(1) )
355232, 354syl5eqelr 2522 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 [,) +oo )  |-> 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  O(1) )
35616, 355eqeltrd 2517 . . 3  |-  ( T. 
->  ( ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  |`  (
1 [,) +oo )
)  e.  O(1) )
357 eqid 2429 . . . . . 6  |-  ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )
358357, 225fmpti 6060 . . . . 5  |-  ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) : RR --> CC
359358a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) : RR --> CC )
360 ssid 3489 . . . . 5  |-  RR  C_  RR
361360a1i 11 . . . 4  |-  ( T. 
->  RR  C_  RR )
362359, 361, 282o1resb 13608 . . 3  |-  ( T. 
->  ( ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  O(1)  <->  (
( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  |`  ( 1 [,) +oo ) )  e.  O(1) ) )
363356, 362mpbird 235 . 2  |-  ( T. 
->  ( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  O(1) )
364363trud 1446 1  |-  ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   T. wtru 1438    e. wcel 1870    =/= wne 2625   _Vcvv 3087    C_ wss 3442   class class class wbr 4426    |-> cmpt 4484    |` cres 4856   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543   +oocpnf 9671    < clt 9674    <_ cle 9675    - cmin 9859   -ucneg 9860    / cdiv 10268   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   [,)cico 11637   ...cfz 11782  ..^cfzo 11913   |_cfl 12023   abscabs 13276    ~~> r crli 13527   O(1)co1 13528   sum_csu 13730   logclog 23369  Λcvma 23881  ψcchp 23882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-o1 13532  df-lo1 13533  df-sum 13731  df-ef 14099  df-e 14100  df-sin 14101  df-cos 14102  df-pi 14104  df-dvds 14284  df-gcd 14443  df-prm 14594  df-pc 14750  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-cmp 20333  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-cxp 23372  df-em 23783  df-cht 23886  df-vma 23887  df-chp 23888  df-ppi 23889
This theorem is referenced by:  pntrsumbnd  24267
  Copyright terms: Public domain W3C validator