MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd Unicode version

Theorem pntrsumbnd 21213
Description: A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrsumbnd  |-  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Distinct variable groups:    m, a, n    m, c, n, R
Allowed substitution hint:    R( a)

Proof of Theorem pntrsumbnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssid 3327 . . . . 5  |-  RR  C_  RR
21a1i 11 . . . 4  |-  (  T. 
->  RR  C_  RR )
3 1re 9046 . . . . 5  |-  1  e.  RR
43a1i 11 . . . 4  |-  (  T. 
->  1  e.  RR )
5 fzfid 11267 . . . . 5  |-  ( (  T.  /\  m  e.  RR )  ->  (
1 ... ( |_ `  m ) )  e. 
Fin )
6 elfznn 11036 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  m
) )  ->  n  e.  NN )
76adantl 453 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  n  e.  NN )
8 nnrp 10577 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  RR+ )
9 pntrval.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
109pntrf 21210 . . . . . . . . . 10  |-  R : RR+
--> RR
1110ffvelrni 5828 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( R `
 n )  e.  RR )
128, 11syl 16 . . . . . . . 8  |-  ( n  e.  NN  ->  ( R `  n )  e.  RR )
13 peano2nn 9968 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
14 nnmulcl 9979 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( n  +  1
)  e.  NN )  ->  ( n  x.  ( n  +  1 ) )  e.  NN )
1513, 14mpdan 650 . . . . . . . 8  |-  ( n  e.  NN  ->  (
n  x.  ( n  +  1 ) )  e.  NN )
1612, 15nndivred 10004 . . . . . . 7  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
1716recnd 9070 . . . . . 6  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  CC )
187, 17syl 16 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  CC )
195, 18fsumcl 12482 . . . 4  |-  ( (  T.  /\  m  e.  RR )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
209pntrsumo1 21212 . . . . 5  |-  ( m  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  O
( 1 )
2120a1i 11 . . . 4  |-  (  T. 
->  ( m  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  O ( 1 ) )
22 fzfid 11267 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
23 elfznn 11036 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2423adantl 453 . . . . . . 7  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  n  e.  NN )
2524, 17syl 16 . . . . . 6  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  CC )
2625abscld 12193 . . . . 5  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( abs `  ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  RR )
2722, 26fsumrecl 12483 . . . 4  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
2819adantr 452 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
2928abscld 12193 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
30 fzfid 11267 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  m ) )  e. 
Fin )
3118adantlr 696 . . . . . . 7  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
3231abscld 12193 . . . . . 6  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3330, 32fsumrecl 12483 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3427ad2ant2r 728 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3530, 31fsumabs 12535 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
36 fzfid 11267 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
3723adantl 453 . . . . . . . 8  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3837, 17syl 16 . . . . . . 7  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
3938abscld 12193 . . . . . 6  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
4038absge0d 12201 . . . . . 6  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
41 simplr 732 . . . . . . . 8  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  e.  RR )
42 simprll 739 . . . . . . . 8  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  x  e.  RR )
43 simprr 734 . . . . . . . . 9  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  <  x )
4441, 42, 43ltled 9177 . . . . . . . 8  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  <_  x )
45 flword2 11175 . . . . . . . 8  |-  ( ( m  e.  RR  /\  x  e.  RR  /\  m  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  m ) ) )
4641, 42, 44, 45syl3anc 1184 . . . . . . 7  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  ( |_ `  m ) ) )
47 fzss2 11048 . . . . . . 7  |-  ( ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  m ) )  ->  ( 1 ... ( |_ `  m
) )  C_  (
1 ... ( |_ `  x ) ) )
4846, 47syl 16 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  m ) )  C_  ( 1 ... ( |_ `  x ) ) )
4936, 39, 40, 48fsumless 12530 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
5029, 33, 34, 35, 49letrd 9183 . . . 4  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
512, 4, 19, 21, 27, 50o1bddrp 12291 . . 3  |-  (  T. 
->  E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)
5251trud 1329 . 2  |-  E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
53 zre 10242 . . . . . 6  |-  ( m  e.  ZZ  ->  m  e.  RR )
5453imim1i 56 . . . . 5  |-  ( ( m  e.  RR  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)  ->  ( m  e.  ZZ  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
55 flid 11171 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  ( |_ `  m )  =  m )
5655oveq2d 6056 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
1 ... ( |_ `  m ) )  =  ( 1 ... m
) )
5756sumeq1d 12450 . . . . . . 7  |-  ( m  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  =  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )
5857fveq2d 5691 . . . . . 6  |-  ( m  e.  ZZ  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
5958breq1d 4182 . . . . 5  |-  ( m  e.  ZZ  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  <->  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
6054, 59mpbidi 208 . . . 4  |-  ( ( m  e.  RR  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)  ->  ( m  e.  ZZ  ->  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
6160ralimi2 2738 . . 3  |-  ( A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
c )
6261reximi 2773 . 2  |-  ( E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  ->  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
6352, 62ax-mp 8 1  |-  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568   ...cfz 10999   |_cfl 11156   abscabs 11994   O ( 1 )co1 12235   sum_csu 12434  ψcchp 20828
This theorem is referenced by:  pntrsumbnd2  21214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-o1 12239  df-lo1 12240  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408  df-em 20784  df-cht 20832  df-vma 20833  df-chp 20834  df-ppi 20835
  Copyright terms: Public domain W3C validator