MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd Structured version   Unicode version

Theorem pntrsumbnd 22774
Description: A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrsumbnd  |-  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Distinct variable groups:    m, a, n    m, c, n, R
Allowed substitution hint:    R( a)

Proof of Theorem pntrsumbnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssid 3372 . . . . 5  |-  RR  C_  RR
21a1i 11 . . . 4  |-  ( T. 
->  RR  C_  RR )
3 1red 9397 . . . 4  |-  ( T. 
->  1  e.  RR )
4 fzfid 11791 . . . . 5  |-  ( ( T.  /\  m  e.  RR )  ->  (
1 ... ( |_ `  m ) )  e. 
Fin )
5 elfznn 11474 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  m
) )  ->  n  e.  NN )
65adantl 463 . . . . . 6  |-  ( ( ( T.  /\  m  e.  RR )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  n  e.  NN )
7 nnrp 10996 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  RR+ )
8 pntrval.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
98pntrf 22771 . . . . . . . . . 10  |-  R : RR+
--> RR
109ffvelrni 5839 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( R `
 n )  e.  RR )
117, 10syl 16 . . . . . . . 8  |-  ( n  e.  NN  ->  ( R `  n )  e.  RR )
12 peano2nn 10330 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
13 nnmulcl 10341 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( n  +  1
)  e.  NN )  ->  ( n  x.  ( n  +  1 ) )  e.  NN )
1412, 13mpdan 663 . . . . . . . 8  |-  ( n  e.  NN  ->  (
n  x.  ( n  +  1 ) )  e.  NN )
1511, 14nndivred 10366 . . . . . . 7  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
1615recnd 9408 . . . . . 6  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  CC )
176, 16syl 16 . . . . 5  |-  ( ( ( T.  /\  m  e.  RR )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  CC )
184, 17fsumcl 13206 . . . 4  |-  ( ( T.  /\  m  e.  RR )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
198pntrsumo1 22773 . . . . 5  |-  ( m  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  O(1)
2019a1i 11 . . . 4  |-  ( T. 
->  ( m  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  O(1) )
21 fzfid 11791 . . . . 5  |-  ( ( T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
22 elfznn 11474 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2322adantl 463 . . . . . . 7  |-  ( ( ( T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  n  e.  NN )
2423, 16syl 16 . . . . . 6  |-  ( ( ( T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  CC )
2524abscld 12918 . . . . 5  |-  ( ( ( T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( abs `  ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  RR )
2621, 25fsumrecl 13207 . . . 4  |-  ( ( T.  /\  ( x  e.  RR  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
2718adantr 462 . . . . . 6  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
2827abscld 12918 . . . . 5  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
29 fzfid 11791 . . . . . 6  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  m ) )  e. 
Fin )
3017adantlr 709 . . . . . . 7  |-  ( ( ( ( T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
3130abscld 12918 . . . . . 6  |-  ( ( ( ( T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3229, 31fsumrecl 13207 . . . . 5  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3326ad2ant2r 741 . . . . 5  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3429, 30fsumabs 13260 . . . . 5  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
35 fzfid 11791 . . . . . 6  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
3622adantl 463 . . . . . . . 8  |-  ( ( ( ( T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3736, 16syl 16 . . . . . . 7  |-  ( ( ( ( T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
3837abscld 12918 . . . . . 6  |-  ( ( ( ( T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3937absge0d 12926 . . . . . 6  |-  ( ( ( ( T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
40 simplr 749 . . . . . . . 8  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  e.  RR )
41 simprll 756 . . . . . . . 8  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  x  e.  RR )
42 simprr 751 . . . . . . . . 9  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  <  x )
4340, 41, 42ltled 9518 . . . . . . . 8  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  <_  x )
44 flword2 11657 . . . . . . . 8  |-  ( ( m  e.  RR  /\  x  e.  RR  /\  m  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  m ) ) )
4540, 41, 43, 44syl3anc 1213 . . . . . . 7  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  ( |_ `  m ) ) )
46 fzss2 11494 . . . . . . 7  |-  ( ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  m ) )  ->  ( 1 ... ( |_ `  m
) )  C_  (
1 ... ( |_ `  x ) ) )
4745, 46syl 16 . . . . . 6  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  m ) )  C_  ( 1 ... ( |_ `  x ) ) )
4835, 38, 39, 47fsumless 13255 . . . . 5  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
4928, 32, 33, 34, 48letrd 9524 . . . 4  |-  ( ( ( T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
502, 3, 18, 20, 26, 49o1bddrp 13016 . . 3  |-  ( T. 
->  E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)
5150trud 1373 . 2  |-  E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
52 zre 10646 . . . . . 6  |-  ( m  e.  ZZ  ->  m  e.  RR )
5352imim1i 58 . . . . 5  |-  ( ( m  e.  RR  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)  ->  ( m  e.  ZZ  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
54 flid 11653 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  ( |_ `  m )  =  m )
5554oveq2d 6106 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
1 ... ( |_ `  m ) )  =  ( 1 ... m
) )
5655sumeq1d 13174 . . . . . . 7  |-  ( m  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  =  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )
5756fveq2d 5692 . . . . . 6  |-  ( m  e.  ZZ  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
5857breq1d 4299 . . . . 5  |-  ( m  e.  ZZ  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  <->  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
5953, 58mpbidi 216 . . . 4  |-  ( ( m  e.  RR  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)  ->  ( m  e.  ZZ  ->  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
6059ralimi2 2786 . . 3  |-  ( A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
c )
6160reximi 2821 . 2  |-  ( E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  ->  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
6251, 61ax-mp 5 1  |-  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364   T. wtru 1365    e. wcel 1761   A.wral 2713   E.wrex 2714    C_ wss 3325   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   ZZcz 10642   ZZ>=cuz 10857   RR+crp 10987   ...cfz 11433   |_cfl 11636   abscabs 12719   O(1)co1 12960   sum_csu 13159  ψcchp 22389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-o1 12964  df-lo1 12965  df-sum 13160  df-ef 13349  df-e 13350  df-sin 13351  df-cos 13352  df-pi 13354  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-cmp 18949  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967  df-cxp 21968  df-em 22345  df-cht 22393  df-vma 22394  df-chp 22395  df-ppi 22396
This theorem is referenced by:  pntrsumbnd2  22775
  Copyright terms: Public domain W3C validator