MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6 Structured version   Unicode version

Theorem pntrlog2bndlem6 23489
Description: Lemma for pntrlog2bnd 23490. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntrlog2bnd.t  |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
pntrlog2bndlem5.1  |-  ( ph  ->  B  e.  RR+ )
pntrlog2bndlem5.2  |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  B )
pntrlog2bndlem6.1  |-  ( ph  ->  A  e.  RR )
pntrlog2bndlem6.2  |-  ( ph  ->  1  <_  A )
Assertion
Ref Expression
pntrlog2bndlem6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
Distinct variable groups:    i, a, n, x, y, A    B, n, x, y    ph, n, x    S, n, x, y    R, n, x, y    T, n
Allowed substitution hints:    ph( y, i, a)    B( i, a)    R( i, a)    S( i, a)    T( x, y, i, a)

Proof of Theorem pntrlog2bndlem6
StepHypRef Expression
1 elioore 11548 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 11213 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 9600 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 11573 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 9721 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11280 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
11 pntrlog2bnd.r . . . . . . . . . . . . 13  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1211pntrf 23469 . . . . . . . . . . . 12  |-  R : RR+
--> RR
1312ffvelrni 6011 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1410, 13syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  RR )
1514recnd 9611 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  CC )
1615abscld 13216 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( R `  x ) )  e.  RR )
1710relogcld 22729 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
1816, 17remulcld 9613 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  RR )
19 2re 10594 . . . . . . . . . 10  |-  2  e.  RR
2019a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR )
212, 8rplogcld 22735 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2220, 21rerpdivcld 11272 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
23 fzfid 12039 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2410adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
25 elfznn 11703 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2625adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2726nnrpd 11244 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2824, 27rpdivcld 11262 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2912ffvelrni 6011 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3028, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3130recnd 9611 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3231abscld 13216 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
3327relogcld 22729 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
3432, 33remulcld 9613 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3523, 34fsumrecl 13505 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3622, 35remulcld 9613 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
3718, 36resubcld 9976 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
3837recnd 9611 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
39 fzfid 12039 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) )  e.  Fin )
40 ssun2 3661 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) )
41 pntsval.1 . . . . . . . . . . . 12  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
42 pntrlog2bnd.t . . . . . . . . . . . 12  |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
43 pntrlog2bndlem5.1 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
44 pntrlog2bndlem5.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  B )
45 pntrlog2bndlem6.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
46 pntrlog2bndlem6.2 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  A )
4741, 11, 42, 43, 44, 45, 46pntrlog2bndlem6a 23488 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  =  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ) )
4840, 47syl5sseqr 3546 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
4948sselda 3497 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
5049, 34syldan 470 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
5139, 50fsumrecl 13505 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
5222, 51remulcld 9613 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
5352recnd 9611 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  CC )
542recnd 9611 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
5510rpne0d 11250 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
5638, 53, 54, 55divdird 10347 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )
5718recnd 9611 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  CC )
5836recnd 9611 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  CC )
5957, 58, 53subsubd 9947 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )  =  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
6022recnd 9611 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
6135recnd 9611 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
6251recnd 9611 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
6360, 61, 62subdid 10001 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
643a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  RR+ )
6545, 64, 46rpgecld 11280 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR+ )
6665adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR+ )
672, 66rerpdivcld 11272 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  /  A )  e.  RR )
68 reflcl 11890 . . . . . . . . . . . . . . 15  |-  ( ( x  /  A )  e.  RR  ->  ( |_ `  ( x  /  A ) )  e.  RR )
6967, 68syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( |_ `  ( x  /  A ) )  e.  RR )
7069ltp1d 10465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( |_ `  ( x  /  A ) )  < 
( ( |_ `  ( x  /  A
) )  +  1 ) )
71 fzdisj 11701 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( x  /  A ) )  <  ( ( |_
`  ( x  /  A ) )  +  1 )  ->  (
( 1 ... ( |_ `  ( x  /  A ) ) )  i^i  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
7270, 71syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 1 ... ( |_ `  ( x  /  A ) ) )  i^i  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
7334recnd 9611 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
7472, 47, 23, 73fsumsplit 13511 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
7574oveq1d 6290 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
76 fzfid 12039 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
77 ssun1 3660 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  ( x  /  A
) ) )  C_  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) )
7877, 47syl5sseqr 3546 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  ( x  /  A
) ) )  C_  ( 1 ... ( |_ `  x ) ) )
7978sselda 3497 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
8079, 34syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
8176, 80fsumrecl 13505 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
8281recnd 9611 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
8382, 62pncand 9920 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
8475, 83eqtrd 2501 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
8584oveq2d 6291 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
8663, 85eqtr3d 2503 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
8786oveq2d 6291 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )  =  ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
8859, 87eqtr3d 2503 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
8988oveq1d 6290 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
9056, 89eqtr3d 2503 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) )  =  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
9190mpteq2dva 4526 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) ) )
9237, 10rerpdivcld 11272 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
9352, 10rerpdivcld 11272 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  e.  RR )
9441, 11, 42, 43, 44pntrlog2bndlem5 23487 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
95 ioossre 11575 . . . . 5  |-  ( 1 (,) +oo )  C_  RR
9695a1i 11 . . . 4  |-  ( ph  ->  ( 1 (,) +oo )  C_  RR )
97 1red 9600 . . . 4  |-  ( ph  ->  1  e.  RR )
9819a1i 11 . . . . 5  |-  ( ph  ->  2  e.  RR )
9943rpred 11245 . . . . . 6  |-  ( ph  ->  B  e.  RR )
10065relogcld 22729 . . . . . . 7  |-  ( ph  ->  ( log `  A
)  e.  RR )
101100, 97readdcld 9612 . . . . . 6  |-  ( ph  ->  ( ( log `  A
)  +  1 )  e.  RR )
10299, 101remulcld 9613 . . . . 5  |-  ( ph  ->  ( B  x.  (
( log `  A
)  +  1 ) )  e.  RR )
10398, 102remulcld 9613 . . . 4  |-  ( ph  ->  ( 2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
10451, 21rerpdivcld 11272 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
10599adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  RR )
10666relogcld 22729 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  A )  e.  RR )
107106, 5readdcld 9612 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  RR )
108105, 107remulcld 9613 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( ( log `  A )  +  1 ) )  e.  RR )
1092, 108remulcld 9613 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
110 2rp 11214 . . . . . . . . . 10  |-  2  e.  RR+
111110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR+ )
112111rpge0d 11249 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  2 )
113105, 2remulcld 9613 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  x )  e.  RR )
11449, 25syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  NN )
115114nnrecred 10570 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
11639, 115fsumrecl 13505 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
117113, 116remulcld 9613 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  e.  RR )
11821adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR+ )
11950, 118rerpdivcld 11272 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
120105adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  B  e.  RR )
1212adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  RR )
122120, 121remulcld 9613 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  x )  e.  RR )
123122, 115remulcld 9613 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  x.  ( 1  /  n
) )  e.  RR )
12449, 32syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
125121, 114nndivred 10573 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
126120, 125remulcld 9613 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  ( x  /  n
) )  e.  RR )
12749, 27syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
128127relogcld 22729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
12910adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
130129relogcld 22729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR )
13149, 31syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
132131absge0d 13224 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
133 elfzle2 11679 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) )  ->  n  <_  ( |_ `  x
) )
134133adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  <_  ( |_ `  x ) )
135114nnzd 10954 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
136 flge 11899 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  ZZ )  ->  ( n  <_  x  <->  n  <_  ( |_ `  x ) ) )
137121, 135, 136syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( n  <_  x  <->  n  <_  ( |_
`  x ) ) )
138134, 137mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  <_  x )
139127, 129logled 22733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( n  <_  x  <->  ( log `  n
)  <_  ( log `  x ) ) )
140138, 139mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  n )  <_  ( log `  x ) )
141128, 130, 124, 132, 140lemul2ad 10475 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  x
) ) )
14250, 124, 118ledivmul2d 11295 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( abs `  ( R `  ( x  /  n ) ) )  <-> 
( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  x
) ) ) )
143141, 142mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( abs `  ( R `  ( x  /  n ) ) ) )
144125recnd 9611 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
14549, 28syldan 470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
146145rpne0d 11250 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  =/=  0
)
147131, 144, 146absdivd 13235 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( abs `  (
x  /  n ) ) ) )
14810rpge0d 11249 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  x )
149148adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  x )
150121, 127, 149divge0d 11281 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  ( x  /  n ) )
151125, 150absidd 13203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( x  /  n
) )  =  ( x  /  n ) )
152151oveq2d 6291 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  / 
( abs `  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) ) )
153147, 152eqtrd 2501 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) ) )
15444ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  B )
155 fveq2 5857 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  ( R `  y )  =  ( R `  ( x  /  n
) ) )
156 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  y  =  ( x  /  n ) )
157155, 156oveq12d 6293 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( x  /  n )  ->  (
( R `  y
)  /  y )  =  ( ( R `
 ( x  /  n ) )  / 
( x  /  n
) ) )
158157fveq2d 5861 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  ( abs `  ( ( R `
 y )  / 
y ) )  =  ( abs `  (
( R `  (
x  /  n ) )  /  ( x  /  n ) ) ) )
159158breq1d 4450 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  /  n )  ->  (
( abs `  (
( R `  y
)  /  y ) )  <_  B  <->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  <_  B
) )
160159rspcv 3203 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR+  ->  ( A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
) )  <_  B  ->  ( abs `  (
( R `  (
x  /  n ) )  /  ( x  /  n ) ) )  <_  B )
)
161145, 154, 160sylc 60 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  <_  B
)
162153, 161eqbrtrrd 4462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  / 
( x  /  n
) )  <_  B
)
163124, 120, 145ledivmul2d 11295 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) )  <_  B 
<->  ( abs `  ( R `  ( x  /  n ) ) )  <_  ( B  x.  ( x  /  n
) ) ) )
164162, 163mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  <_  ( B  x.  ( x  /  n ) ) )
165119, 124, 126, 143, 164letrd 9727 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( B  x.  ( x  /  n
) ) )
166120recnd 9611 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  B  e.  CC )
16754adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  CC )
168114nncnd 10541 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  CC )
169114nnne0d 10569 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  =/=  0 )
170166, 167, 168, 169divassd 10344 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  /  n )  =  ( B  x.  ( x  /  n ) ) )
171166, 167mulcld 9605 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  x )  e.  CC )
172171, 168, 169divrecd 10312 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  /  n )  =  ( ( B  x.  x
)  x.  ( 1  /  n ) ) )
173170, 172eqtr3d 2503 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  ( x  /  n
) )  =  ( ( B  x.  x
)  x.  ( 1  /  n ) ) )
174165, 173breqtrd 4464 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( ( B  x.  x )  x.  ( 1  /  n
) ) )
17539, 119, 123, 174fsumle 13562 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  /  ( log `  x
) )  <_  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( B  x.  x )  x.  (
1  /  n ) ) )
17617recnd 9611 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
17749, 73syldan 470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
17821rpne0d 11250 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
17939, 176, 177, 178fsumdivc 13550 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  /  ( log `  x
) ) )
180105recnd 9611 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  CC )
181180, 54mulcld 9605 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  x )  e.  CC )
182115recnd 9611 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
18339, 181, 182fsummulc2 13548 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( B  x.  x )  x.  ( 1  /  n ) ) )
184175, 179, 1833brtr4d 4470 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( ( B  x.  x )  x. 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) ) )
18543adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  RR+ )
186185rpge0d 11249 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  B )
187105, 2, 186, 148mulge0d 10118 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( B  x.  x
) )
18826nnrecred 10570 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
18923, 188fsumrecl 13505 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
19017, 106resubcld 9976 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  -  ( log `  A ) )  e.  RR )
19117, 5readdcld 9612 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  +  1 )  e.  RR )
19279, 188syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( 1  /  n )  e.  RR )
19376, 192fsumrecl 13505 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  RR )
194 harmonicubnd 23060 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  <_  ( ( log `  x )  +  1 ) )
1952, 9, 194syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  <_  ( ( log `  x )  +  1 ) )
19610, 66relogdivd 22732 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  ( x  /  A ) )  =  ( ( log `  x
)  -  ( log `  A ) ) )
19710, 66rpdivcld 11262 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  /  A )  e.  RR+ )
198 harmoniclbnd 23059 . . . . . . . . . . . . . . 15  |-  ( ( x  /  A )  e.  RR+  ->  ( log `  ( x  /  A
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
) )
199197, 198syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  ( x  /  A ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( 1  /  n ) )
200196, 199eqbrtrrd 4462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  -  ( log `  A ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( 1  /  n ) )
201189, 190, 191, 193, 195, 200le2subd 10160 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  <_  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) ) )
20226nncnd 10541 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
20326nnne0d 10569 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
204202, 203reccld 10302 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
20572, 47, 23, 204fsumsplit 13511 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n )  + 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) ) )
206205oveq1d 6290 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n ) ) )
20779, 25syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
208207nnrecred 10570 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( 1  /  n )  e.  RR )
20976, 208fsumrecl 13505 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  RR )
210209recnd 9611 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  CC )
211116recnd 9611 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  e.  CC )
212210, 211pncan2d 9921 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n ) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) )
213206, 212eqtrd 2501 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( 1  /  n ) )
214 1cnd 9601 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
215106recnd 9611 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  A )  e.  CC )
216176, 214, 215pnncand 9958 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) )  =  ( 1  +  ( log `  A
) ) )
217214, 215addcomd 9770 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  +  ( log `  A ) )  =  ( ( log `  A
)  +  1 ) )
218216, 217eqtrd 2501 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) )  =  ( ( log `  A )  +  1 ) )
219201, 213, 2183brtr3d 4469 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 ) )
220116, 107, 113, 187, 219lemul2ad 10475 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  <_  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) ) )
221107recnd 9611 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  CC )
222180, 54, 221mulassd 9608 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) )  =  ( B  x.  ( x  x.  (
( log `  A
)  +  1 ) ) ) )
223180, 54, 221mul12d 9777 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( x  x.  ( ( log `  A
)  +  1 ) ) )  =  ( x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
224222, 223eqtrd 2501 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) )  =  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) )
225220, 224breqtrd 4464 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  <_  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
226104, 117, 109, 184, 225letrd 9727 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) )
227104, 109, 20, 112, 226lemul2ad 10475 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) ) )  <_  ( 2  x.  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) ) )
228 2cnd 10597 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
229228, 176, 62, 178div32d 10332 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  =  ( 2  x.  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
230215, 214addcld 9604 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  CC )
231180, 230mulcld 9605 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( ( log `  A )  +  1 ) )  e.  CC )
23254, 228, 231mul12d 9777 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( 2  x.  ( B  x.  ( ( log `  A
)  +  1 ) ) ) )  =  ( 2  x.  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) )
233227, 229, 2323brtr4d 4470 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  <_ 
( x  x.  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) )
234103adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
23552, 234, 10ledivmuld 11294 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  <->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  <_ 
( x  x.  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) ) )
236233, 235mpbird 232 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
237236adantrr 716 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x
) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
23896, 93, 97, 103, 237ello1d 13295 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) )  e. 
<_O(1) )
23992, 93, 94, 238lo1add 13398 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )  e.  <_O(1) )
24091, 239eqeltrrd 2549 1  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807    u. cun 3467    i^i cin 3468    C_ wss 3469   (/)c0 3778   ifcif 3932   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   +oocpnf 9614    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   ZZcz 10853   RR+crp 11209   (,)cioo 11518   ...cfz 11661   |_cfl 11884   abscabs 13017   <_O(1)clo1 13259   sum_csu 13457   logclog 22663  Λcvma 23086  ψcchp 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-o1 13262  df-lo1 13263  df-sum 13458  df-ef 13654  df-e 13655  df-sin 13656  df-cos 13657  df-pi 13659  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-cmp 19646  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665  df-cxp 22666  df-em 23043  df-cht 23091  df-vma 23092  df-chp 23093  df-ppi 23094  df-mu 23095
This theorem is referenced by:  pntrlog2bnd  23490
  Copyright terms: Public domain W3C validator