MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6 Structured version   Unicode version

Theorem pntrlog2bndlem6 22958
Description: Lemma for pntrlog2bnd 22959. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntrlog2bnd.t  |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
pntrlog2bndlem5.1  |-  ( ph  ->  B  e.  RR+ )
pntrlog2bndlem5.2  |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  B )
pntrlog2bndlem6.1  |-  ( ph  ->  A  e.  RR )
pntrlog2bndlem6.2  |-  ( ph  ->  1  <_  A )
Assertion
Ref Expression
pntrlog2bndlem6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
Distinct variable groups:    i, a, n, x, y, A    B, n, x, y    ph, n, x    S, n, x, y    R, n, x, y    T, n
Allowed substitution hints:    ph( y, i, a)    B( i, a)    R( i, a)    S( i, a)    T( x, y, i, a)

Proof of Theorem pntrlog2bndlem6
StepHypRef Expression
1 elioore 11434 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 11099 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 9505 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 11459 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 9626 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11166 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
11 pntrlog2bnd.r . . . . . . . . . . . . 13  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1211pntrf 22938 . . . . . . . . . . . 12  |-  R : RR+
--> RR
1312ffvelrni 5944 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1410, 13syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  RR )
1514recnd 9516 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  CC )
1615abscld 13033 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( R `  x ) )  e.  RR )
1710relogcld 22198 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
1816, 17remulcld 9518 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  RR )
19 2re 10495 . . . . . . . . . 10  |-  2  e.  RR
2019a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR )
212, 8rplogcld 22204 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2220, 21rerpdivcld 11158 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
23 fzfid 11905 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2410adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
25 elfznn 11588 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2625adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2726nnrpd 11130 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2824, 27rpdivcld 11148 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2912ffvelrni 5944 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3028, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3130recnd 9516 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3231abscld 13033 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
3327relogcld 22198 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
3432, 33remulcld 9518 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3523, 34fsumrecl 13322 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3622, 35remulcld 9518 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
3718, 36resubcld 9880 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
3837recnd 9516 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
39 fzfid 11905 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) )  e.  Fin )
40 ssun2 3621 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) )
41 pntsval.1 . . . . . . . . . . . 12  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
42 pntrlog2bnd.t . . . . . . . . . . . 12  |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
43 pntrlog2bndlem5.1 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
44 pntrlog2bndlem5.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  B )
45 pntrlog2bndlem6.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
46 pntrlog2bndlem6.2 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  A )
4741, 11, 42, 43, 44, 45, 46pntrlog2bndlem6a 22957 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  =  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ) )
4840, 47syl5sseqr 3506 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
4948sselda 3457 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
5049, 34syldan 470 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
5139, 50fsumrecl 13322 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
5222, 51remulcld 9518 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
5352recnd 9516 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  CC )
542recnd 9516 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
5510rpne0d 11136 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
5638, 53, 54, 55divdird 10249 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )
5718recnd 9516 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  CC )
5836recnd 9516 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  CC )
5957, 58, 53subsubd 9851 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )  =  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
6022recnd 9516 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
6135recnd 9516 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
6251recnd 9516 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
6360, 61, 62subdid 9904 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
643a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  RR+ )
6545, 64, 46rpgecld 11166 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR+ )
6665adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR+ )
672, 66rerpdivcld 11158 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  /  A )  e.  RR )
68 reflcl 11756 . . . . . . . . . . . . . . 15  |-  ( ( x  /  A )  e.  RR  ->  ( |_ `  ( x  /  A ) )  e.  RR )
6967, 68syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( |_ `  ( x  /  A ) )  e.  RR )
7069ltp1d 10367 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( |_ `  ( x  /  A ) )  < 
( ( |_ `  ( x  /  A
) )  +  1 ) )
71 fzdisj 11586 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( x  /  A ) )  <  ( ( |_
`  ( x  /  A ) )  +  1 )  ->  (
( 1 ... ( |_ `  ( x  /  A ) ) )  i^i  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
7270, 71syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 1 ... ( |_ `  ( x  /  A ) ) )  i^i  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
7334recnd 9516 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
7472, 47, 23, 73fsumsplit 13327 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
7574oveq1d 6208 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
76 fzfid 11905 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
77 ssun1 3620 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  ( x  /  A
) ) )  C_  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) )
7877, 47syl5sseqr 3506 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  ( x  /  A
) ) )  C_  ( 1 ... ( |_ `  x ) ) )
7978sselda 3457 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
8079, 34syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
8176, 80fsumrecl 13322 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
8281recnd 9516 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
8382, 62pncand 9824 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
8475, 83eqtrd 2492 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
8584oveq2d 6209 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
8663, 85eqtr3d 2494 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
8786oveq2d 6209 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )  =  ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
8859, 87eqtr3d 2494 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
8988oveq1d 6208 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
9056, 89eqtr3d 2494 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) )  =  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
9190mpteq2dva 4479 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) ) )
9237, 10rerpdivcld 11158 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
9352, 10rerpdivcld 11158 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  e.  RR )
9441, 11, 42, 43, 44pntrlog2bndlem5 22956 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
95 ioossre 11461 . . . . 5  |-  ( 1 (,) +oo )  C_  RR
9695a1i 11 . . . 4  |-  ( ph  ->  ( 1 (,) +oo )  C_  RR )
97 1red 9505 . . . 4  |-  ( ph  ->  1  e.  RR )
9819a1i 11 . . . . 5  |-  ( ph  ->  2  e.  RR )
9943rpred 11131 . . . . . 6  |-  ( ph  ->  B  e.  RR )
10065relogcld 22198 . . . . . . 7  |-  ( ph  ->  ( log `  A
)  e.  RR )
101100, 97readdcld 9517 . . . . . 6  |-  ( ph  ->  ( ( log `  A
)  +  1 )  e.  RR )
10299, 101remulcld 9518 . . . . 5  |-  ( ph  ->  ( B  x.  (
( log `  A
)  +  1 ) )  e.  RR )
10398, 102remulcld 9518 . . . 4  |-  ( ph  ->  ( 2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
10451, 21rerpdivcld 11158 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
10599adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  RR )
10666relogcld 22198 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  A )  e.  RR )
107106, 5readdcld 9517 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  RR )
108105, 107remulcld 9518 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( ( log `  A )  +  1 ) )  e.  RR )
1092, 108remulcld 9518 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
110 2rp 11100 . . . . . . . . . 10  |-  2  e.  RR+
111110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR+ )
112111rpge0d 11135 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  2 )
113105, 2remulcld 9518 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  x )  e.  RR )
11449, 25syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  NN )
115114nnrecred 10471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
11639, 115fsumrecl 13322 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
117113, 116remulcld 9518 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  e.  RR )
11821adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR+ )
11950, 118rerpdivcld 11158 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
120105adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  B  e.  RR )
1212adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  RR )
122120, 121remulcld 9518 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  x )  e.  RR )
123122, 115remulcld 9518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  x.  ( 1  /  n
) )  e.  RR )
12449, 32syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
125121, 114nndivred 10474 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
126120, 125remulcld 9518 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  ( x  /  n
) )  e.  RR )
12749, 27syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
128127relogcld 22198 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
12910adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
130129relogcld 22198 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR )
13149, 31syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
132131absge0d 13041 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
133 elfzle2 11565 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) )  ->  n  <_  ( |_ `  x
) )
134133adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  <_  ( |_ `  x ) )
135114nnzd 10850 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
136 flge 11765 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  ZZ )  ->  ( n  <_  x  <->  n  <_  ( |_ `  x ) ) )
137121, 135, 136syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( n  <_  x  <->  n  <_  ( |_
`  x ) ) )
138134, 137mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  <_  x )
139127, 129logled 22202 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( n  <_  x  <->  ( log `  n
)  <_  ( log `  x ) ) )
140138, 139mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  n )  <_  ( log `  x ) )
141128, 130, 124, 132, 140lemul2ad 10377 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  x
) ) )
14250, 124, 118ledivmul2d 11181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( abs `  ( R `  ( x  /  n ) ) )  <-> 
( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  x
) ) ) )
143141, 142mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( abs `  ( R `  ( x  /  n ) ) ) )
144125recnd 9516 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
14549, 28syldan 470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
146145rpne0d 11136 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  =/=  0
)
147131, 144, 146absdivd 13052 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( abs `  (
x  /  n ) ) ) )
14810rpge0d 11135 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  x )
149148adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  x )
150121, 127, 149divge0d 11167 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  ( x  /  n ) )
151125, 150absidd 13020 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( x  /  n
) )  =  ( x  /  n ) )
152151oveq2d 6209 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  / 
( abs `  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) ) )
153147, 152eqtrd 2492 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) ) )
15444ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  B )
155 fveq2 5792 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  ( R `  y )  =  ( R `  ( x  /  n
) ) )
156 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  y  =  ( x  /  n ) )
157155, 156oveq12d 6211 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( x  /  n )  ->  (
( R `  y
)  /  y )  =  ( ( R `
 ( x  /  n ) )  / 
( x  /  n
) ) )
158157fveq2d 5796 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  ( abs `  ( ( R `
 y )  / 
y ) )  =  ( abs `  (
( R `  (
x  /  n ) )  /  ( x  /  n ) ) ) )
159158breq1d 4403 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  /  n )  ->  (
( abs `  (
( R `  y
)  /  y ) )  <_  B  <->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  <_  B
) )
160159rspcv 3168 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR+  ->  ( A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
) )  <_  B  ->  ( abs `  (
( R `  (
x  /  n ) )  /  ( x  /  n ) ) )  <_  B )
)
161145, 154, 160sylc 60 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  <_  B
)
162153, 161eqbrtrrd 4415 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  / 
( x  /  n
) )  <_  B
)
163124, 120, 145ledivmul2d 11181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) )  <_  B 
<->  ( abs `  ( R `  ( x  /  n ) ) )  <_  ( B  x.  ( x  /  n
) ) ) )
164162, 163mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  <_  ( B  x.  ( x  /  n ) ) )
165119, 124, 126, 143, 164letrd 9632 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( B  x.  ( x  /  n
) ) )
166120recnd 9516 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  B  e.  CC )
16754adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  CC )
168114nncnd 10442 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  CC )
169114nnne0d 10470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  =/=  0 )
170166, 167, 168, 169divassd 10246 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  /  n )  =  ( B  x.  ( x  /  n ) ) )
171166, 167mulcld 9510 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  x )  e.  CC )
172171, 168, 169divrecd 10214 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  /  n )  =  ( ( B  x.  x
)  x.  ( 1  /  n ) ) )
173170, 172eqtr3d 2494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  ( x  /  n
) )  =  ( ( B  x.  x
)  x.  ( 1  /  n ) ) )
174165, 173breqtrd 4417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( ( B  x.  x )  x.  ( 1  /  n
) ) )
17539, 119, 123, 174fsumle 13373 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  /  ( log `  x
) )  <_  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( B  x.  x )  x.  (
1  /  n ) ) )
17617recnd 9516 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
17749, 73syldan 470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
17821rpne0d 11136 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
17939, 176, 177, 178fsumdivc 13364 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  /  ( log `  x
) ) )
180105recnd 9516 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  CC )
181180, 54mulcld 9510 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  x )  e.  CC )
182115recnd 9516 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
18339, 181, 182fsummulc2 13362 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( B  x.  x )  x.  ( 1  /  n ) ) )
184175, 179, 1833brtr4d 4423 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( ( B  x.  x )  x. 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) ) )
18543adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  RR+ )
186185rpge0d 11135 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  B )
187105, 2, 186, 148mulge0d 10020 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( B  x.  x
) )
18826nnrecred 10471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
18923, 188fsumrecl 13322 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
19017, 106resubcld 9880 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  -  ( log `  A ) )  e.  RR )
19117, 5readdcld 9517 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  +  1 )  e.  RR )
19279, 188syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( 1  /  n )  e.  RR )
19376, 192fsumrecl 13322 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  RR )
194 harmonicubnd 22529 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  <_  ( ( log `  x )  +  1 ) )
1952, 9, 194syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  <_  ( ( log `  x )  +  1 ) )
19610, 66relogdivd 22201 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  ( x  /  A ) )  =  ( ( log `  x
)  -  ( log `  A ) ) )
19710, 66rpdivcld 11148 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  /  A )  e.  RR+ )
198 harmoniclbnd 22528 . . . . . . . . . . . . . . 15  |-  ( ( x  /  A )  e.  RR+  ->  ( log `  ( x  /  A
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
) )
199197, 198syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  ( x  /  A ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( 1  /  n ) )
200196, 199eqbrtrrd 4415 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  -  ( log `  A ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( 1  /  n ) )
201189, 190, 191, 193, 195, 200le2subd 10062 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  <_  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) ) )
20226nncnd 10442 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
20326nnne0d 10470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
204202, 203reccld 10204 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
20572, 47, 23, 204fsumsplit 13327 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n )  + 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) ) )
206205oveq1d 6208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n ) ) )
20779, 25syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
208207nnrecred 10471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( 1  /  n )  e.  RR )
20976, 208fsumrecl 13322 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  RR )
210209recnd 9516 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  CC )
211116recnd 9516 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  e.  CC )
212210, 211pncan2d 9825 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n ) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) )
213206, 212eqtrd 2492 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( 1  /  n ) )
214 1cnd 9506 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
215106recnd 9516 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  A )  e.  CC )
216176, 214, 215pnncand 9862 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) )  =  ( 1  +  ( log `  A
) ) )
217214, 215addcomd 9675 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  +  ( log `  A ) )  =  ( ( log `  A
)  +  1 ) )
218216, 217eqtrd 2492 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) )  =  ( ( log `  A )  +  1 ) )
219201, 213, 2183brtr3d 4422 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 ) )
220116, 107, 113, 187, 219lemul2ad 10377 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  <_  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) ) )
221107recnd 9516 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  CC )
222180, 54, 221mulassd 9513 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) )  =  ( B  x.  ( x  x.  (
( log `  A
)  +  1 ) ) ) )
223180, 54, 221mul12d 9682 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( x  x.  ( ( log `  A
)  +  1 ) ) )  =  ( x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
224222, 223eqtrd 2492 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) )  =  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) )
225220, 224breqtrd 4417 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  <_  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
226104, 117, 109, 184, 225letrd 9632 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) )
227104, 109, 20, 112, 226lemul2ad 10377 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) ) )  <_  ( 2  x.  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) ) )
228 2cnd 10498 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
229228, 176, 62, 178div32d 10234 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  =  ( 2  x.  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
230215, 214addcld 9509 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  CC )
231180, 230mulcld 9510 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( ( log `  A )  +  1 ) )  e.  CC )
23254, 228, 231mul12d 9682 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( 2  x.  ( B  x.  ( ( log `  A
)  +  1 ) ) ) )  =  ( 2  x.  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) )
233227, 229, 2323brtr4d 4423 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  <_ 
( x  x.  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) )
234103adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
23552, 234, 10ledivmuld 11180 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  <->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  <_ 
( x  x.  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) ) )
236233, 235mpbird 232 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
237236adantrr 716 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x
) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
23896, 93, 97, 103, 237ello1d 13112 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) )  e. 
<_O(1) )
23992, 93, 94, 238lo1add 13215 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )  e.  <_O(1) )
24091, 239eqeltrrd 2540 1  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795    u. cun 3427    i^i cin 3428    C_ wss 3429   (/)c0 3738   ifcif 3892   class class class wbr 4393    |-> cmpt 4451   ` cfv 5519  (class class class)co 6193   CCcc 9384   RRcr 9385   0cc0 9386   1c1 9387    + caddc 9389    x. cmul 9391   +oocpnf 9519    < clt 9522    <_ cle 9523    - cmin 9699    / cdiv 10097   NNcn 10426   2c2 10475   ZZcz 10750   RR+crp 11095   (,)cioo 11404   ...cfz 11547   |_cfl 11750   abscabs 12834   <_O(1)clo1 13076   sum_csu 13274   logclog 22132  Λcvma 22555  ψcchp 22556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-disj 4364  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-fac 12162  df-bc 12189  df-hash 12214  df-shft 12667  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-limsup 13060  df-clim 13077  df-rlim 13078  df-o1 13079  df-lo1 13080  df-sum 13275  df-ef 13464  df-e 13465  df-sin 13466  df-cos 13467  df-pi 13469  df-dvds 13647  df-gcd 13802  df-prm 13875  df-pc 14015  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-lp 18865  df-perf 18866  df-cn 18956  df-cnp 18957  df-haus 19044  df-cmp 19115  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-xms 20020  df-ms 20021  df-tms 20022  df-cncf 20579  df-limc 21467  df-dv 21468  df-log 22134  df-cxp 22135  df-em 22512  df-cht 22560  df-vma 22561  df-chp 22562  df-ppi 22563  df-mu 22564
This theorem is referenced by:  pntrlog2bnd  22959
  Copyright terms: Public domain W3C validator