MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem3 Structured version   Unicode version

Theorem pntrlog2bndlem3 22960
Description: Lemma for pntrlog2bnd 22965. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntrlog2bndlem3.1  |-  ( ph  ->  A  e.  RR+ )
pntrlog2bndlem3.2  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
Assertion
Ref Expression
pntrlog2bndlem3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O(1) )
Distinct variable groups:    i, a, n, x, y, A    ph, n, x    S, n, x, y    R, n, x, y
Allowed substitution hints:    ph( y, i, a)    R( i, a)    S( i, a)

Proof of Theorem pntrlog2bndlem3
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 1red 9511 . 2  |-  ( ph  ->  1  e.  RR )
2 pntrlog2bndlem3.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
32rpred 11137 . . . 4  |-  ( ph  ->  A  e.  RR )
43adantr 465 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR )
5 fzfid 11911 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
6 elfznn 11594 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
76adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
87nnred 10447 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
9 elioore 11440 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
109adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
11 1rp 11105 . . . . . . . . . . . . . 14  |-  1  e.  RR+
1211a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
13 1red 9511 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
14 eliooord 11465 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
1514adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
1615simpld 459 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
1713, 10, 16ltled 9632 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
1810, 12, 17rpgecld 11172 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1918adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
207nnrpd 11136 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2111a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR+ )
2220, 21rpaddcld 11152 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  +  1 )  e.  RR+ )
2319, 22rpdivcld 11154 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  ( n  + 
1 ) )  e.  RR+ )
24 pntrlog2bnd.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2524pntrf 22944 . . . . . . . . . . 11  |-  R : RR+
--> RR
2625ffvelrni 5950 . . . . . . . . . 10  |-  ( ( x  /  ( n  +  1 ) )  e.  RR+  ->  ( R `
 ( x  / 
( n  +  1 ) ) )  e.  RR )
2723, 26syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  (
n  +  1 ) ) )  e.  RR )
2827recnd 9522 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  (
n  +  1 ) ) )  e.  CC )
2919, 20rpdivcld 11154 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
3025ffvelrni 5950 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3129, 30syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3231recnd 9522 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3328, 32subcld 9829 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  ( n  + 
1 ) ) )  -  ( R `  ( x  /  n
) ) )  e.  CC )
3433abscld 13039 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  e.  RR )
358, 34remulcld 9524 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  e.  RR )
365, 35fsumrecl 13328 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  e.  RR )
3710, 16rplogcld 22210 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
3818, 37rpmulcld 11153 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR+ )
3936, 38rerpdivcld 11164 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  e.  RR )
40 ioossre 11467 . . . 4  |-  ( 1 (,) +oo )  C_  RR
412rpcnd 11139 . . . 4  |-  ( ph  ->  A  e.  CC )
42 o1const 13214 . . . 4  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  A  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  A )  e.  O(1) )
4340, 41, 42sylancr 663 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  A )  e.  O(1) )
44 chpo1ubb 22862 . . . 4  |-  E. c  e.  RR+  A. y  e.  RR+  (ψ `  y )  <_  ( c  x.  y
)
45 pntsval.1 . . . . . 6  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
46 simpl 457 . . . . . 6  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  c  e.  RR+ )
47 simpr 461 . . . . . 6  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  A. y  e.  RR+  (ψ `  y
)  <_  ( c  x.  y ) )
4845, 24, 46, 47pntrlog2bndlem2 22959 . . . . 5  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )  e.  O(1) )
4948rexlimiva 2940 . . . 4  |-  ( E. c  e.  RR+  A. y  e.  RR+  (ψ `  y
)  <_  ( c  x.  y )  ->  (
x  e.  ( 1 (,) +oo )  |->  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O(1) )
5044, 49mp1i 12 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )  e.  O(1) )
514, 39, 43, 50o1mul2 13219 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) )  e.  O(1) )
524, 39remulcld 9524 . 2  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  RR )
5332abscld 13039 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
5428abscld 13039 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  ( n  +  1 ) ) ) )  e.  RR )
5553, 54resubcld 9886 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  -  ( abs `  ( R `
 ( x  / 
( n  +  1 ) ) ) ) )  e.  RR )
5645pntsf 22954 . . . . . . . . 9  |-  S : RR
--> RR
5756ffvelrni 5950 . . . . . . . 8  |-  ( n  e.  RR  ->  ( S `  n )  e.  RR )
588, 57syl 16 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  RR )
59 2re 10501 . . . . . . . . 9  |-  2  e.  RR
6059a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  RR )
6120relogcld 22204 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
628, 61remulcld 9524 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( log `  n
) )  e.  RR )
6360, 62remulcld 9524 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( n  x.  ( log `  n
) ) )  e.  RR )
6458, 63resubcld 9886 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) )  e.  RR )
6555, 64remulcld 9524 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  RR )
665, 65fsumrecl 13328 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  e.  RR )
6766, 38rerpdivcld 11164 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) )  e.  RR )
6867recnd 9522 . 2  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) )  e.  CC )
6968abscld 13039 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  RR )
7052recnd 9522 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  CC )
7170abscld 13039 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )  e.  RR )
7266recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  e.  CC )
7372abscld 13039 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  e.  RR )
744, 36remulcld 9524 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  e.  RR )
7565recnd 9522 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  CC )
7675abscld 13039 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  e.  RR )
775, 76fsumrecl 13328 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  e.  RR )
785, 75fsumabs 13381 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) ) )
794adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  RR )
8079, 35remulcld 9524 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  e.  RR )
8155recnd 9522 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  -  ( abs `  ( R `
 ( x  / 
( n  +  1 ) ) ) ) )  e.  CC )
8281abscld 13039 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  e.  RR )
8364recnd 9522 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) )  e.  CC )
8483abscld 13039 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  RR )
8579, 8remulcld 9524 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  n )  e.  RR )
8681absge0d 13047 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( abs `  ( R `
 ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) ) )
8783absge0d 13047 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) ) ) )
8832, 28abs2difabsd 13062 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  <_ 
( abs `  (
( R `  (
x  /  n ) )  -  ( R `
 ( x  / 
( n  +  1 ) ) ) ) ) )
8932, 28abssubd 13056 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  -  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  =  ( abs `  ( ( R `  ( x  /  ( n  + 
1 ) ) )  -  ( R `  ( x  /  n
) ) ) ) )
9088, 89breqtrd 4423 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  <_ 
( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )
9158recnd 9522 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  CC )
928recnd 9522 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
937nnne0d 10476 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9491, 92, 93divcld 10217 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  /  n )  e.  CC )
95 2cnd 10504 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
9661recnd 9522 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
9795, 96mulcld 9516 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  n
) )  e.  CC )
9894, 97subcld 9829 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) )  e.  CC )
9998, 92absmuld 13057 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) )  x.  n ) )  =  ( ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) )  x.  ( abs `  n
) ) )
10094, 97, 92subdird 9911 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  -  ( 2  x.  ( log `  n
) ) )  x.  n )  =  ( ( ( ( S `
 n )  /  n )  x.  n
)  -  ( ( 2  x.  ( log `  n ) )  x.  n ) ) )
10191, 92, 93divcan1d 10218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  n
)  /  n )  x.  n )  =  ( S `  n
) )
10295, 92, 96mul32d 9689 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  n )  x.  ( log `  n
) )  =  ( ( 2  x.  ( log `  n ) )  x.  n ) )
10395, 92, 96mulassd 9519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  n )  x.  ( log `  n
) )  =  ( 2  x.  ( n  x.  ( log `  n
) ) ) )
104102, 103eqtr3d 2497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  ( log `  n ) )  x.  n )  =  ( 2  x.  ( n  x.  ( log `  n
) ) ) )
105101, 104oveq12d 6217 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  x.  n )  -  ( ( 2  x.  ( log `  n
) )  x.  n
) )  =  ( ( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )
106100, 105eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  -  ( 2  x.  ( log `  n
) ) )  x.  n )  =  ( ( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )
107106fveq2d 5802 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) )  x.  n ) )  =  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) ) )
10820rpge0d 11141 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  n )
1098, 108absidd 13026 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  n )  =  n )
110109oveq2d 6215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  x.  ( abs `  n ) )  =  ( ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  x.  n ) )
11199, 107, 1103eqtr3d 2503 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  =  ( ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) )  x.  n ) )
11298abscld 13039 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  e.  RR )
1137nnge1d 10474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
114 1re 9495 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
115 elicopnf 11501 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR  ->  (
n  e.  ( 1 [,) +oo )  <->  ( n  e.  RR  /\  1  <_  n ) ) )
116114, 115ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 [,) +oo )  <->  ( n  e.  RR  /\  1  <_  n ) )
1178, 113, 116sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ( 1 [,) +oo ) )
118 pntrlog2bndlem3.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
119118ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
120 fveq2 5798 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  ( S `  y )  =  ( S `  n ) )
121 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  y  =  n )
122120, 121oveq12d 6217 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  (
( S `  y
)  /  y )  =  ( ( S `
 n )  /  n ) )
123 fveq2 5798 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  ( log `  y )  =  ( log `  n
) )
124123oveq2d 6215 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  (
2  x.  ( log `  y ) )  =  ( 2  x.  ( log `  n ) ) )
125122, 124oveq12d 6217 . . . . . . . . . . . . . . . . 17  |-  ( y  =  n  ->  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) )  =  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )
126125fveq2d 5802 . . . . . . . . . . . . . . . 16  |-  ( y  =  n  ->  ( abs `  ( ( ( S `  y )  /  y )  -  ( 2  x.  ( log `  y ) ) ) )  =  ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) ) )
127126breq1d 4409 . . . . . . . . . . . . . . 15  |-  ( y  =  n  ->  (
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A  <->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  <_  A )
)
128127rspcv 3173 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( ( ( S `  y
)  /  y )  -  ( 2  x.  ( log `  y
) ) ) )  <_  A  ->  ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  <_  A
) )
129117, 119, 128sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  <_  A )
130112, 79, 8, 108, 129lemul1ad 10382 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  x.  n
)  <_  ( A  x.  n ) )
131111, 130eqbrtrd 4419 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  <_  ( A  x.  n ) )
13282, 34, 84, 85, 86, 87, 90, 131lemul12ad 10385 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) ) )  x.  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  (
( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
13381, 83absmuld 13057 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  =  ( ( abs `  (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  x.  ( abs `  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) ) )
13441ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  CC )
13534recnd 9522 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  e.  CC )
136134, 92, 135mulassd 9519 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( A  x.  n )  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  =  ( A  x.  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) ) )
137134, 92mulcld 9516 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  n )  e.  CC )
138137, 135mulcomd 9517 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( A  x.  n )  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  =  ( ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
139136, 138eqtr3d 2497 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  =  ( ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
140132, 133, 1393brtr4d 4429 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_ 
( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
1415, 76, 80, 140fsumle 13379 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
14241adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  CC )
14335recnd 9522 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  e.  CC )
1445, 142, 143fsummulc2 13368 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
145141, 144breqtrrd 4425 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
14673, 77, 74, 78, 145letrd 9638 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_ 
( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) ) )
14773, 74, 38, 146lediv1dd 11191 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  <_  ( ( A  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  /  ( x  x.  ( log `  x
) ) ) )
14838rpcnd 11139 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
14938rpne0d 11142 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( log `  x ) )  =/=  0 )
15072, 148, 149absdivd 13058 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  / 
( abs `  (
x  x.  ( log `  x ) ) ) ) )
15138rpred 11137 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR )
15238rpge0d 11141 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( x  x.  ( log `  x ) ) )
153151, 152absidd 13026 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( x  x.  ( log `  x
) ) )  =  ( x  x.  ( log `  x ) ) )
154153oveq2d 6215 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  ( abs `  ( x  x.  ( log `  x
) ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )
155150, 154eqtr2d 2496 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  =  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) ) ) )
15636recnd 9522 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  e.  CC )
157142, 156, 148, 149divassd 10252 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) )  / 
( x  x.  ( log `  x ) ) )  =  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )
158147, 155, 1573brtr3d 4428 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )
15952leabsd 13018 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
16069, 52, 71, 158, 159letrd 9638 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
161160adantrr 716 . 2  |-  ( (
ph  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x
) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
1621, 51, 52, 68, 161o1le 13247 1  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799    C_ wss 3435   class class class wbr 4399    |-> cmpt 4457   ` cfv 5525  (class class class)co 6199   CCcc 9390   RRcr 9391   1c1 9393    + caddc 9395    x. cmul 9397   +oocpnf 9525    < clt 9528    <_ cle 9529    - cmin 9705    / cdiv 10103   NNcn 10432   2c2 10481   RR+crp 11101   (,)cioo 11410   [,)cico 11412   ...cfz 11553   |_cfl 11756   abscabs 12840   O(1)co1 13081   sum_csu 13280   logclog 22138  Λcvma 22561  ψcchp 22562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-ioc 11415  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-mod 11825  df-seq 11923  df-exp 11982  df-fac 12168  df-bc 12195  df-hash 12220  df-shft 12673  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-limsup 13066  df-clim 13083  df-rlim 13084  df-o1 13085  df-lo1 13086  df-sum 13281  df-ef 13470  df-e 13471  df-sin 13472  df-cos 13473  df-pi 13475  df-dvds 13653  df-gcd 13808  df-prm 13881  df-pc 14021  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-fbas 17938  df-fg 17939  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cld 18754  df-ntr 18755  df-cls 18756  df-nei 18833  df-lp 18871  df-perf 18872  df-cn 18962  df-cnp 18963  df-haus 19050  df-tx 19266  df-hmeo 19459  df-fil 19550  df-fm 19642  df-flim 19643  df-flf 19644  df-xms 20026  df-ms 20027  df-tms 20028  df-cncf 20585  df-limc 21473  df-dv 21474  df-log 22140  df-cxp 22141  df-em 22518  df-cht 22566  df-vma 22567  df-chp 22568  df-ppi 22569
This theorem is referenced by:  pntrlog2bndlem4  22961
  Copyright terms: Public domain W3C validator