MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem3 Unicode version

Theorem pntrlog2bndlem3 21226
Description: Lemma for pntrlog2bnd 21231. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntrlog2bndlem3.1  |-  ( ph  ->  A  e.  RR+ )
pntrlog2bndlem3.2  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
Assertion
Ref Expression
pntrlog2bndlem3  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    i, a, n, x, y, A    ph, n, x    S, n, x, y    R, n, x, y
Allowed substitution hints:    ph( y, i, a)    R( i, a)    S( i, a)

Proof of Theorem pntrlog2bndlem3
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 1re 9046 . . 3  |-  1  e.  RR
21a1i 11 . 2  |-  ( ph  ->  1  e.  RR )
3 pntrlog2bndlem3.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
43rpred 10604 . . . 4  |-  ( ph  ->  A  e.  RR )
54adantr 452 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  A  e.  RR )
6 fzfid 11267 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
7 elfznn 11036 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
87adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
98nnred 9971 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
10 elioore 10902 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
1110adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
12 1rp 10572 . . . . . . . . . . . . . 14  |-  1  e.  RR+
1312a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
1413rpred 10604 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
15 eliooord 10926 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
1615adantl 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
1716simpld 446 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
1814, 11, 17ltled 9177 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
1911, 13, 18rpgecld 10639 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
2019adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
218nnrpd 10603 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2212a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR+ )
2321, 22rpaddcld 10619 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  +  1 )  e.  RR+ )
2420, 23rpdivcld 10621 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  ( n  + 
1 ) )  e.  RR+ )
25 pntrlog2bnd.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2625pntrf 21210 . . . . . . . . . . 11  |-  R : RR+
--> RR
2726ffvelrni 5828 . . . . . . . . . 10  |-  ( ( x  /  ( n  +  1 ) )  e.  RR+  ->  ( R `
 ( x  / 
( n  +  1 ) ) )  e.  RR )
2824, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  (
n  +  1 ) ) )  e.  RR )
2928recnd 9070 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  (
n  +  1 ) ) )  e.  CC )
3020, 21rpdivcld 10621 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
3126ffvelrni 5828 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3230, 31syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3332recnd 9070 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3429, 33subcld 9367 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  ( n  + 
1 ) ) )  -  ( R `  ( x  /  n
) ) )  e.  CC )
3534abscld 12193 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  e.  RR )
369, 35remulcld 9072 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  e.  RR )
376, 36fsumrecl 12483 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  e.  RR )
3811, 17rplogcld 20477 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
3919, 38rpmulcld 10620 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR+ )
4037, 39rerpdivcld 10631 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  e.  RR )
41 ioossre 10928 . . . 4  |-  ( 1 (,)  +oo )  C_  RR
423rpcnd 10606 . . . 4  |-  ( ph  ->  A  e.  CC )
43 o1const 12368 . . . 4  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  A  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  A )  e.  O ( 1 ) )
4441, 42, 43sylancr 645 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  A )  e.  O
( 1 ) )
45 chpo1ubb 21128 . . . 4  |-  E. c  e.  RR+  A. y  e.  RR+  (ψ `  y )  <_  ( c  x.  y
)
46 pntsval.1 . . . . . 6  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
47 simpl 444 . . . . . 6  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  c  e.  RR+ )
48 simpr 448 . . . . . 6  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  A. y  e.  RR+  (ψ `  y
)  <_  ( c  x.  y ) )
4946, 25, 47, 48pntrlog2bndlem2 21225 . . . . 5  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
5049rexlimiva 2785 . . . 4  |-  ( E. c  e.  RR+  A. y  e.  RR+  (ψ `  y
)  <_  ( c  x.  y )  ->  (
x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
5145, 50mp1i 12 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
525, 40, 44, 51o1mul2 12373 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) )  e.  O
( 1 ) )
535, 40remulcld 9072 . 2  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  RR )
5433abscld 12193 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
5529abscld 12193 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  ( n  +  1 ) ) ) )  e.  RR )
5654, 55resubcld 9421 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  -  ( abs `  ( R `
 ( x  / 
( n  +  1 ) ) ) ) )  e.  RR )
5746pntsf 21220 . . . . . . . . 9  |-  S : RR
--> RR
5857ffvelrni 5828 . . . . . . . 8  |-  ( n  e.  RR  ->  ( S `  n )  e.  RR )
599, 58syl 16 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  RR )
60 2re 10025 . . . . . . . . 9  |-  2  e.  RR
6160a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  RR )
6221relogcld 20471 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
639, 62remulcld 9072 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( log `  n
) )  e.  RR )
6461, 63remulcld 9072 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( n  x.  ( log `  n
) ) )  e.  RR )
6559, 64resubcld 9421 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) )  e.  RR )
6656, 65remulcld 9072 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  RR )
676, 66fsumrecl 12483 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  e.  RR )
6867, 39rerpdivcld 10631 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) )  e.  RR )
6968recnd 9070 . 2  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) )  e.  CC )
7069abscld 12193 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  RR )
7153recnd 9070 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  CC )
7271abscld 12193 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )  e.  RR )
7367recnd 9070 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  e.  CC )
7473abscld 12193 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  e.  RR )
755, 37remulcld 9072 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  e.  RR )
7666recnd 9070 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  CC )
7776abscld 12193 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  e.  RR )
786, 77fsumrecl 12483 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  e.  RR )
796, 76fsumabs 12535 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) ) )
805adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  RR )
8180, 36remulcld 9072 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  e.  RR )
8256recnd 9070 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  -  ( abs `  ( R `
 ( x  / 
( n  +  1 ) ) ) ) )  e.  CC )
8382abscld 12193 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  e.  RR )
8465recnd 9070 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) )  e.  CC )
8584abscld 12193 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  RR )
8680, 9remulcld 9072 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  n )  e.  RR )
8782absge0d 12201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( abs `  ( R `
 ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) ) )
8884absge0d 12201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) ) ) )
8933, 29abs2difabsd 12216 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  <_ 
( abs `  (
( R `  (
x  /  n ) )  -  ( R `
 ( x  / 
( n  +  1 ) ) ) ) ) )
9033, 29abssubd 12210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  -  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  =  ( abs `  ( ( R `  ( x  /  ( n  + 
1 ) ) )  -  ( R `  ( x  /  n
) ) ) ) )
9189, 90breqtrd 4196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  <_ 
( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )
9259recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  CC )
939recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
948nnne0d 10000 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9592, 93, 94divcld 9746 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  /  n )  e.  CC )
96 2cn 10026 . . . . . . . . . . . . . . . . 17  |-  2  e.  CC
9796a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
9862recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
9997, 98mulcld 9064 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  n
) )  e.  CC )
10095, 99subcld 9367 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) )  e.  CC )
101100, 93absmuld 12211 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) )  x.  n ) )  =  ( ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) )  x.  ( abs `  n
) ) )
10295, 99, 93subdird 9446 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  -  ( 2  x.  ( log `  n
) ) )  x.  n )  =  ( ( ( ( S `
 n )  /  n )  x.  n
)  -  ( ( 2  x.  ( log `  n ) )  x.  n ) ) )
10392, 93, 94divcan1d 9747 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  n
)  /  n )  x.  n )  =  ( S `  n
) )
10461recnd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
105104, 93, 98mul32d 9232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  n )  x.  ( log `  n
) )  =  ( ( 2  x.  ( log `  n ) )  x.  n ) )
106104, 93, 98mulassd 9067 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  n )  x.  ( log `  n
) )  =  ( 2  x.  ( n  x.  ( log `  n
) ) ) )
107105, 106eqtr3d 2438 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  ( log `  n ) )  x.  n )  =  ( 2  x.  ( n  x.  ( log `  n
) ) ) )
108103, 107oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  x.  n )  -  ( ( 2  x.  ( log `  n
) )  x.  n
) )  =  ( ( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )
109102, 108eqtrd 2436 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  -  ( 2  x.  ( log `  n
) ) )  x.  n )  =  ( ( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )
110109fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) )  x.  n ) )  =  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) ) )
11121rpge0d 10608 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  n )
1129, 111absidd 12180 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  n )  =  n )
113112oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  x.  ( abs `  n ) )  =  ( ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  x.  n ) )
114101, 110, 1133eqtr3d 2444 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  =  ( ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) )  x.  n ) )
115100abscld 12193 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  e.  RR )
1168nnge1d 9998 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
117 elicopnf 10956 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR  ->  (
n  e.  ( 1 [,)  +oo )  <->  ( n  e.  RR  /\  1  <_  n ) ) )
1181, 117ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 [,) 
+oo )  <->  ( n  e.  RR  /\  1  <_  n ) )
1199, 116, 118sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ( 1 [,)  +oo ) )
120 pntrlog2bndlem3.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
121120ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
122 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  ( S `  y )  =  ( S `  n ) )
123 id 20 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  y  =  n )
124122, 123oveq12d 6058 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  (
( S `  y
)  /  y )  =  ( ( S `
 n )  /  n ) )
125 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  ( log `  y )  =  ( log `  n
) )
126125oveq2d 6056 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  (
2  x.  ( log `  y ) )  =  ( 2  x.  ( log `  n ) ) )
127124, 126oveq12d 6058 . . . . . . . . . . . . . . . . 17  |-  ( y  =  n  ->  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) )  =  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )
128127fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( y  =  n  ->  ( abs `  ( ( ( S `  y )  /  y )  -  ( 2  x.  ( log `  y ) ) ) )  =  ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) ) )
129128breq1d 4182 . . . . . . . . . . . . . . 15  |-  ( y  =  n  ->  (
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A  <->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  <_  A )
)
130129rspcv 3008 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( ( ( S `  y
)  /  y )  -  ( 2  x.  ( log `  y
) ) ) )  <_  A  ->  ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  <_  A
) )
131119, 121, 130sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  <_  A )
132115, 80, 9, 111, 131lemul1ad 9906 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  x.  n
)  <_  ( A  x.  n ) )
133114, 132eqbrtrd 4192 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  <_  ( A  x.  n ) )
13483, 35, 85, 86, 87, 88, 91, 133lemul12ad 9909 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) ) )  x.  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  (
( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
13582, 84absmuld 12211 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  =  ( ( abs `  (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  x.  ( abs `  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) ) )
13642ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  CC )
13735recnd 9070 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  e.  CC )
138136, 93, 137mulassd 9067 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( A  x.  n )  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  =  ( A  x.  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) ) )
139136, 93mulcld 9064 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  n )  e.  CC )
140139, 137mulcomd 9065 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( A  x.  n )  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  =  ( ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
141138, 140eqtr3d 2438 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  =  ( ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
142134, 135, 1413brtr4d 4202 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_ 
( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
1436, 77, 81, 142fsumle 12533 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
14442adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  A  e.  CC )
14536recnd 9070 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  e.  CC )
1466, 144, 145fsummulc2 12522 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
147143, 146breqtrrd 4198 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
14874, 78, 75, 79, 147letrd 9183 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_ 
( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) ) )
14974, 75, 39, 148lediv1dd 10658 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  <_  ( ( A  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  /  ( x  x.  ( log `  x
) ) ) )
15039rpcnd 10606 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
15139rpne0d 10609 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  =/=  0 )
15273, 150, 151absdivd 12212 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  / 
( abs `  (
x  x.  ( log `  x ) ) ) ) )
15339rpred 10604 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR )
15439rpge0d 10608 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  ( x  x.  ( log `  x ) ) )
155153, 154absidd 12180 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( x  x.  ( log `  x
) ) )  =  ( x  x.  ( log `  x ) ) )
156155oveq2d 6056 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  ( abs `  ( x  x.  ( log `  x
) ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )
157152, 156eqtr2d 2437 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  =  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) ) ) )
15837recnd 9070 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  e.  CC )
159144, 158, 150, 151divassd 9781 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) )  / 
( x  x.  ( log `  x ) ) )  =  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )
160149, 157, 1593brtr3d 4201 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )
16153leabsd 12172 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
16270, 53, 72, 160, 161letrd 9183 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
163162adantrr 698 . 2  |-  ( (
ph  /\  ( x  e.  ( 1 (,)  +oo )  /\  1  <_  x
) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
1642, 52, 53, 69, 163o1le 12401 1  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   RR+crp 10568   (,)cioo 10872   [,)cico 10874   ...cfz 10999   |_cfl 11156   abscabs 11994   O ( 1 )co1 12235   sum_csu 12434   logclog 20405  Λcvma 20827  ψcchp 20828
This theorem is referenced by:  pntrlog2bndlem4  21227
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-o1 12239  df-lo1 12240  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408  df-em 20784  df-cht 20832  df-vma 20833  df-chp 20834  df-ppi 20835
  Copyright terms: Public domain W3C validator