MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem1 Unicode version

Theorem pntrlog2bndlem1 21224
Description: The sum of selberg3r 21216 and selberg4r 21217. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrlog2bndlem1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O
( 1 )
Distinct variable groups:    i, a, n, x    S, n, x    R, n, x
Allowed substitution hints:    R( i, a)    S( i, a)

Proof of Theorem pntrlog2bndlem1
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 9046 . . . 4  |-  1  e.  RR
21a1i 11 . . 3  |-  (  T. 
->  1  e.  RR )
3 pntrlog2bnd.r . . . . 5  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
43selberg34r 21218 . . . 4  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  O ( 1 )
5 elioore 10902 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
65adantl 453 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
7 1rp 10572 . . . . . . . . . . . 12  |-  1  e.  RR+
87a1i 11 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
98rpred 10604 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
10 eliooord 10926 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
1110adantl 453 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
1211simpld 446 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
139, 6, 12ltled 9177 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
146, 8, 13rpgecld 10639 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
153pntrf 21210 . . . . . . . . . . 11  |-  R : RR+
--> RR
1615ffvelrni 5828 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1714, 16syl 16 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  e.  RR )
1814relogcld 20471 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
1917, 18remulcld 9072 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  RR )
20 fzfid 11267 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2114adantr 452 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
22 elfznn 11036 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2322adantl 453 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2423nnrpd 10603 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2521, 24rpdivcld 10621 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2615ffvelrni 5828 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
2725, 26syl 16 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
28 fzfid 11267 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
29 sgmss 20842 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
3023, 29syl 16 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
31 ssfi 7288 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
3228, 30, 31syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
33 ssrab2 3388 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  n }  C_  NN
34 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  m  e.  { y  e.  NN  | 
y  ||  n }
)
3533, 34sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  m  e.  NN )
36 vmacl 20854 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
3735, 36syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  m
)  e.  RR )
38 dvdsdivcl 20919 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  m )  e.  { y  e.  NN  |  y  ||  n } )
3923, 38sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  m )  e.  {
y  e.  NN  | 
y  ||  n }
)
4033, 39sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  m )  e.  NN )
41 vmacl 20854 . . . . . . . . . . . . . . 15  |-  ( ( n  /  m )  e.  NN  ->  (Λ `  ( n  /  m
) )  e.  RR )
4240, 41syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  m ) )  e.  RR )
4337, 42remulcld 9072 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  e.  RR )
4432, 43fsumrecl 12483 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  RR )
45 vmacl 20854 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
4623, 45syl 16 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
4724relogcld 20471 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
4846, 47remulcld 9072 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  RR )
4944, 48resubcld 9421 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) )  e.  RR )
5027, 49remulcld 9072 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
5120, 50fsumrecl 12483 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
526, 12rplogcld 20477 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
5351, 52rerpdivcld 10631 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) )  e.  RR )
5419, 53resubcld 9421 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  RR )
5554, 14rerpdivcld 10631 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x )  e.  RR )
5655recnd 9070 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x )  e.  CC )
5756lo1o12 12282 . . . 4  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  O ( 1 )  <->  ( x  e.  ( 1 (,)  +oo )  |->  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )  e.  <_ O ( 1 ) ) )
584, 57mpbii 203 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )  e.  <_ O ( 1 ) )
5956abscld 12193 . . 3  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  RR )
6017recnd 9070 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  e.  CC )
6160abscld 12193 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( R `  x ) )  e.  RR )
6261, 18remulcld 9072 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  RR )
6327recnd 9070 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
6463abscld 12193 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
6523nnred 9971 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
66 pntsval.1 . . . . . . . . . . . 12  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
6766pntsf 21220 . . . . . . . . . . 11  |-  S : RR
--> RR
6867ffvelrni 5828 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( S `  n )  e.  RR )
6965, 68syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  RR )
701a1i 11 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7165, 70resubcld 9421 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  RR )
7267ffvelrni 5828 . . . . . . . . . 10  |-  ( ( n  -  1 )  e.  RR  ->  ( S `  ( n  -  1 ) )  e.  RR )
7371, 72syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  e.  RR )
7469, 73resubcld 9421 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  e.  RR )
7564, 74remulcld 9072 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( ( S `  n )  -  ( S `  ( n  -  1 ) ) ) )  e.  RR )
7620, 75fsumrecl 12483 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  e.  RR )
7776, 52rerpdivcld 10631 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) )  e.  RR )
7862, 77resubcld 9421 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  e.  RR )
7978, 14rerpdivcld 10631 . . 3  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  e.  RR )
8018recnd 9070 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
8160, 80mulcld 9064 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  CC )
8251recnd 9070 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  CC )
8352rpne0d 10609 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
8482, 80, 83divcld 9746 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) )  e.  CC )
8581, 84subcld 9367 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  CC )
8685abscld 12193 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( R `  x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  e.  RR )
8782abscld 12193 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  e.  RR )
8887, 52rerpdivcld 10631 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) )  e.  RR )
8962, 88resubcld 9421 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )  e.  RR )
9050recnd 9070 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  CC )
9190abscld 12193 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  e.  RR )
9220, 91fsumrecl 12483 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) )  e.  RR )
9320, 90fsumabs 12535 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) ) )
9449recnd 9070 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) )  e.  CC )
9563, 94absmuld 12211 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( abs `  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) ) )
9694abscld 12193 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
9763absge0d 12201 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
9844recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  CC )
9948recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
10098, 99abs2dif2d 12215 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  <_  ( ( abs `  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  +  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )
10173recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  e.  CC )
10298, 99addcld 9063 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  e.  CC )
103101, 102pncan2d 9369 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  (
n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  -  ( S `
 ( n  - 
1 ) ) )  =  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
104 elfzuz 11011 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ( ZZ>= `  1 )
)
105104adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ( ZZ>= `  1 )
)
106 elfznn 11036 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
107106adantl 453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  k  e.  NN )
108 vmacl 20854 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  (Λ `  k
)  e.  RR )
110107nnrpd 10603 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  k  e.  RR+ )
111110relogcld 20471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( log `  k )  e.  RR )
112109, 111remulcld 9072 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( (Λ `  k )  x.  ( log `  k ) )  e.  RR )
113 fzfid 11267 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( 1 ... k )  e. 
Fin )
114 sgmss 20842 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
115107, 114syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  { y  e.  NN  |  y  ||  k }  C_  ( 1 ... k ) )
116 ssfi 7288 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
117113, 115, 116syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  { y  e.  NN  |  y  ||  k }  e.  Fin )
118 ssrab2 3388 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { y  e.  NN  |  y 
||  k }  C_  NN
119 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  m  e.  { y  e.  NN  | 
y  ||  k }
)
120118, 119sseldi 3306 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  m  e.  NN )
121120, 36syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (Λ `  m
)  e.  RR )
122 dvdsdivcl 20919 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( k  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (
k  /  m )  e.  { y  e.  NN  |  y  ||  k } )
123107, 122sylan 458 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( k  /  m )  e.  {
y  e.  NN  | 
y  ||  k }
)
124118, 123sseldi 3306 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( k  /  m )  e.  NN )
125 vmacl 20854 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  /  m )  e.  NN  ->  (Λ `  ( k  /  m
) )  e.  RR )
126124, 125syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (Λ `  (
k  /  m ) )  e.  RR )
127121, 126remulcld 9072 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) )  e.  RR )
128117, 127fsumrecl 12483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  k }  ( (Λ `  m
)  x.  (Λ `  (
k  /  m ) ) )  e.  RR )
129112, 128readdcld 9071 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( (
(Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  e.  RR )
130129recnd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( (
(Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  e.  CC )
131 fveq2 5687 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  (Λ `  k )  =  (Λ `  n ) )
132 fveq2 5687 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  ( log `  k )  =  ( log `  n
) )
133131, 132oveq12d 6058 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  n )  x.  ( log `  n
) ) )
134 breq2 4176 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  n  ->  (
y  ||  k  <->  y  ||  n ) )
135134rabbidv 2908 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  { y  e.  NN  |  y 
||  k }  =  { y  e.  NN  |  y  ||  n }
)
136 oveq1 6047 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  n  ->  (
k  /  m )  =  ( n  /  m ) )
137136fveq2d 5691 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  n  ->  (Λ `  ( k  /  m
) )  =  (Λ `  ( n  /  m
) ) )
138137oveq2d 6056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  n  ->  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
n  /  m ) ) ) )
139138adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  =  n  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
n  /  m ) ) ) )
140135, 139sumeq12rdv 12456 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m
)  x.  (Λ `  (
k  /  m ) ) )  =  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )
141133, 140oveq12d 6058 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
( (Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
142105, 130, 141fsumm1 12492 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... n
) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  ( sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  +  ( ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) ) )
14366pntsval2 21223 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... ( |_
`  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
14465, 143syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... ( |_ `  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
14523nnzd 10330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
146 flid 11171 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ZZ  ->  ( |_ `  n )  =  n )
147145, 146syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  n )  =  n )
148147oveq2d 6056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  n ) )  =  ( 1 ... n
) )
149148sumeq1d 12450 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  sum_ k  e.  ( 1 ... n
) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
150144, 149eqtrd 2436 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... n ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15166pntsval2 21223 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  -  1 )  e.  RR  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( |_
`  ( n  - 
1 ) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15271, 151syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( n  -  1
) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
153 1z 10267 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  ZZ )
155145, 154zsubcld 10336 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  ZZ )
156 flid 11171 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  -  1 )  e.  ZZ  ->  ( |_ `  ( n  - 
1 ) )  =  ( n  -  1 ) )
157155, 156syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( n  -  1 ) )  =  ( n  -  1 ) )
158157oveq2d 6056 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( n  -  1
) ) )  =  ( 1 ... (
n  -  1 ) ) )
159158sumeq1d 12450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( n  - 
1 ) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  sum_ k  e.  ( 1 ... (
n  -  1 ) ) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
160152, 159eqtrd 2436 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
16198, 99addcomd 9224 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
162160, 161oveq12d 6058 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  ( n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  =  ( sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  +  ( ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) ) )
163142, 150, 1623eqtr4d 2446 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  ( ( S `  (
n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )
164163oveq1d 6055 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  =  ( ( ( S `
 ( n  - 
1 ) )  +  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  -  ( S `
 ( n  - 
1 ) ) ) )
165 vmage0 20857 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  0  <_  (Λ `  m )
)
16635, 165syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  0  <_  (Λ `  m ) )
167 vmage0 20857 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  m )  e.  NN  ->  0  <_  (Λ `  ( n  /  m ) ) )
16840, 167syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  0  <_  (Λ `  ( n  /  m
) ) )
16937, 42, 166, 168mulge0d 9559 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  0  <_  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
17032, 43, 169fsumge0 12529 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  sum_
m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
17144, 170absidd 12180 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  =  sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
172 vmage0 20857 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
17323, 172syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
17423nnge1d 9998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
17565, 174logge0d 20478 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  n ) )
17646, 47, 173, 175mulge0d 9559 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( log `  n
) ) )
17748, 176absidd 12180 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( (Λ `  n
)  x.  ( log `  n ) ) )
178171, 177oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  +  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  =  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
179103, 164, 1783eqtr4d 2446 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  =  ( ( abs `  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )  +  ( abs `  (
(Λ `  n )  x.  ( log `  n
) ) ) ) )
180100, 179breqtrrd 4198 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  <_  ( ( S `  n )  -  ( S `  ( n  -  1
) ) ) )
18196, 74, 64, 97, 180lemul2ad 9907 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( abs `  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18295, 181eqbrtrd 4192 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18320, 91, 75, 182fsumle 12533 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18487, 92, 76, 93, 183letrd 9183 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18587, 76, 52, 184lediv1dd 10658 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )
18688, 77, 62, 185lesub2dd 9599 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  <_  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) ) )
18760, 80absmuld 12211 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( R `
 x )  x.  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( abs `  ( log `  x
) ) ) )
1886, 13logge0d 20478 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  ( log `  x
) )
18918, 188absidd 12180 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( log `  x
) )  =  ( log `  x ) )
190189oveq2d 6056 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( abs `  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( log `  x ) ) )
191187, 190eqtrd 2436 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( R `
 x )  x.  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( log `  x ) ) )
19282, 80, 83absdivd 12212 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) ) )
193189oveq2d 6056 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )
194192, 193eqtrd 2436 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )
195191, 194oveq12d 6058 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  (
( R `  x
)  x.  ( log `  x ) ) )  -  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  =  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) ) )
19681, 84abs2difd 12214 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  (
( R `  x
)  x.  ( log `  x ) ) )  -  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  <_  ( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) ) )
197195, 196eqbrtrrd 4194 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )  <_  ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) ) )
19878, 89, 86, 186, 197letrd 9183 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  <_  ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) ) )
19978, 86, 14, 198lediv1dd 10658 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  x ) )
20054recnd 9070 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  CC )
2016recnd 9070 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  CC )
20214rpne0d 10609 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  =/=  0 )
203200, 201, 202absdivd 12212 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  =  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  ( abs `  x
) ) )
20414rpge0d 10608 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  x )
2056, 204absidd 12180 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  x )  =  x )
206205oveq2d 6056 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) )  /  ( abs `  x ) )  =  ( ( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) )  /  x ) )
207203, 206eqtrd 2436 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  =  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  x ) )
208199, 207breqtrrd 4198 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )
209208adantrr 698 . . 3  |-  ( (  T.  /\  ( x  e.  ( 1 (,) 
+oo )  /\  1  <_  x ) )  -> 
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )
2102, 58, 59, 79, 209lo1le 12400 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O
( 1 ) )
211210trud 1329 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721   {crab 2670    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   Fincfn 7068   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568   (,)cioo 10872   ...cfz 10999   |_cfl 11156   abscabs 11994   O ( 1 )co1 12235   <_ O ( 1 )clo1 12236   sum_csu 12434    || cdivides 12807   logclog 20405  Λcvma 20827  ψcchp 20828
This theorem is referenced by:  pntrlog2bndlem4  21227
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-o1 12239  df-lo1 12240  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408  df-em 20784  df-cht 20832  df-vma 20833  df-chp 20834  df-ppi 20835  df-mu 20836
  Copyright terms: Public domain W3C validator