MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Unicode version

Theorem pntrlog2bnd 23513
Description: A bound on  R ( x ) log ^
2 ( x ). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrlog2bnd  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
c )
Distinct variable groups:    x, n, c, R    a, c, n, x, A
Allowed substitution hint:    R( a)

Proof of Theorem pntrlog2bnd
Dummy variables  i 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 11585 . . 3  |-  ( 1 (,) +oo )  C_  RR
21a1i 11 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 (,) +oo )  C_  RR )
3 1red 9610 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
42sselda 3504 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  x  e.  RR )
5 1rp 11223 . . . . . . . . . 10  |-  1  e.  RR+
65a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  e.  RR+ )
7 1red 9610 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  e.  RR )
8 eliooord 11583 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
98adantl 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( 1  <  x  /\  x  < +oo ) )
109simpld 459 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  <  x )
117, 4, 10ltled 9731 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  <_  x )
124, 6, 11rpgecld 11290 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  x  e.  RR+ )
13 pntpbnd.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1413pntrf 23492 . . . . . . . . 9  |-  R : RR+
--> RR
1514ffvelrni 6019 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1612, 15syl 16 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( R `  x )  e.  RR )
1716recnd 9621 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( R `  x )  e.  CC )
1817abscld 13229 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( abs `  ( R `  x
) )  e.  RR )
1912relogcld 22752 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( log `  x )  e.  RR )
2018, 19remulcld 9623 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  e.  RR )
21 2re 10604 . . . . . . 7  |-  2  e.  RR
2221a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  2  e.  RR )
234, 10rplogcld 22758 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( log `  x )  e.  RR+ )
2422, 23rerpdivcld 11282 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( 2  /  ( log `  x
) )  e.  RR )
25 fzfid 12050 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( 1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
2612adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  x  e.  RR+ )
27 elfznn 11713 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) )  ->  n  e.  NN )
2827adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
2928nnrpd 11254 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR+ )
3026, 29rpdivcld 11272 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( x  /  n )  e.  RR+ )
3114ffvelrni 6019 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3230, 31syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3332recnd 9621 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3433abscld 13229 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
3529relogcld 22752 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( log `  n )  e.  RR )
3634, 35remulcld 9623 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3725, 36fsumrecl 13518 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3824, 37remulcld 9623 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
3920, 38resubcld 9986 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
4039, 12rerpdivcld 11282 . 2  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
4113pntrmax 23493 . . 3  |-  E. c  e.  RR+  A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  c
42 eqid 2467 . . . . 5  |-  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
)  x.  ( ( log `  i )  +  (ψ `  (
a  /  i ) ) ) ) )  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_
`  a ) ) ( (Λ `  i
)  x.  ( ( log `  i )  +  (ψ `  (
a  /  i ) ) ) ) )
43 eqid 2467 . . . . 5  |-  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
44 simprl 755 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  c  e.  RR+ )
45 simprr 756 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c )
46 simpll 753 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  A  e.  RR )
47 simplr 754 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  1  <_  A
)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 23512 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
4948rexlimdvaa 2956 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( E. c  e.  RR+  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c  ->  (
x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) ) )
5041, 49mpi 17 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
51 simprl 755 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  y  e.  RR )
52 chpcl 23142 . . . . 5  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
5351, 52syl 16 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  (ψ `  y
)  e.  RR )
5453, 51readdcld 9622 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( (ψ `  y )  +  y )  e.  RR )
555a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  e.  RR+ )
56 simprr 756 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  <_  y )
5751, 55, 56rpgecld 11290 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  y  e.  RR+ )
5857relogcld 22752 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( log `  y )  e.  RR )
5954, 58remulcld 9623 . 2  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  RR )
6040adantr 465 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
6153ad2ant2r 746 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  RR )
62 simprll 761 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
6361, 62readdcld 9622 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  +  y )  e.  RR )
6457ad2ant2r 746 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR+ )
6564relogcld 22752 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  RR )
6663, 65remulcld 9623 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  RR )
6712adantr 465 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
6866, 67rerpdivcld 11282 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  e.  RR )
6916adantr 465 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  e.  RR )
7069recnd 9621 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  e.  CC )
7170abscld 13229 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  e.  RR )
7267relogcld 22752 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR )
7371, 72remulcld 9623 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  e.  RR )
7424adantr 465 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  /  ( log `  x
) )  e.  RR )
7537adantr 465 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
7674, 75remulcld 9623 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
7773, 76resubcld 9986 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
7821a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
794adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
8010adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <  x )
8179, 80rplogcld 22758 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR+ )
82 2rp 11224 . . . . . . . . . 10  |-  2  e.  RR+
8382a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR+ )
8483rpge0d 11259 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  2 )
8578, 81, 84divge0d 11291 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( 2  /  ( log `  x ) ) )
86 fzfid 12050 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
8736adantlr 714 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
8833adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
8988abscld 13229 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
9029adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR+ )
9190relogcld 22752 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( log `  n )  e.  RR )
9288absge0d 13237 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
9390rpred 11255 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR )
9427adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
9594nnge1d 10577 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  1  <_  n )
9693, 95logge0d 22759 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( log `  n ) )
9789, 91, 92, 96mulge0d 10128 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
9886, 87, 97fsumge0 13571 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  sum_
n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
9974, 75, 85, 98mulge0d 10128 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
10073, 76subge02d 10143 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  <_  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  <->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) ) ) )
10199, 100mpbid 210 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) ) )
10270absge0d 13237 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( abs `  ( R `
 x ) ) )
10381rpge0d 11259 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  x ) )
104 chpcl 23142 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
10579, 104syl 16 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  RR )
106105, 79readdcld 9622 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  +  x
)  e.  RR )
10713pntrval 23491 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
10867, 107syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x ) )
109108fveq2d 5869 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  =  ( abs `  ( (ψ `  x )  -  x
) ) )
110105recnd 9621 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  CC )
11179recnd 9621 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  CC )
112110, 111abs2dif2d 13251 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( (ψ `  x
)  -  x ) )  <_  ( ( abs `  (ψ `  x
) )  +  ( abs `  x ) ) )
113 chpge0 23144 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
11479, 113syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  x ) )
115105, 114absidd 13216 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  (ψ `  x )
)  =  (ψ `  x ) )
11667rpge0d 11259 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  x )
11779, 116absidd 13216 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  x )  =  x )
118115, 117oveq12d 6301 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  (ψ `  x
) )  +  ( abs `  x ) )  =  ( (ψ `  x )  +  x
) )
119112, 118breqtrd 4471 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( (ψ `  x
)  -  x ) )  <_  ( (ψ `  x )  +  x
) )
120109, 119eqbrtrd 4467 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  <_  (
(ψ `  x )  +  x ) )
121 simprr 756 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
12279, 62, 121ltled 9731 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
123 chpwordi 23175 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (ψ `  x )  <_  (ψ `  y ) )
12479, 62, 122, 123syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  <_  (ψ `  y
) )
125105, 79, 61, 62, 124, 122le2addd 10169 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  +  x
)  <_  ( (ψ `  y )  +  y ) )
12671, 106, 63, 120, 125letrd 9737 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  <_  (
(ψ `  y )  +  y ) )
12767, 64logled 22756 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( x  <_  y  <->  ( log `  x
)  <_  ( log `  y ) ) )
128122, 127mpbid 210 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  <_  ( log `  y ) )
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 10487 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  <_  (
( (ψ `  y
)  +  y )  x.  ( log `  y
) ) )
13077, 73, 66, 101, 129letrd 9737 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( (ψ `  y )  +  y )  x.  ( log `  y ) ) )
13177, 66, 67, 130lediv1dd 11309 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
( ( ( (ψ `  y )  +  y )  x.  ( log `  y ) )  /  x ) )
1325a1i 11 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  e.  RR+ )
133 chpge0 23144 . . . . . . . 8  |-  ( y  e.  RR  ->  0  <_  (ψ `  y )
)
13462, 133syl 16 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  y ) )
13564rpge0d 11259 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  y )
13661, 62, 134, 135addge0d 10127 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( (ψ `  y )  +  y ) )
137 simprlr 762 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  y )
13862, 137logge0d 22759 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  y ) )
13963, 65, 136, 138mulge0d 10128 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( (ψ `  y
)  +  y )  x.  ( log `  y
) ) )
14011adantr 465 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  x )
141132, 67, 66, 139, 140lediv2ad 11277 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  <_  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  1
) )
14261recnd 9621 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  CC )
14362recnd 9621 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  CC )
144142, 143addcld 9614 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  +  y )  e.  CC )
14565recnd 9621 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  CC )
146144, 145mulcld 9615 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  CC )
147146div1d 10311 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  1
)  =  ( ( (ψ `  y )  +  y )  x.  ( log `  y
) ) )
148141, 147breqtrd 4471 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  <_  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) ) )
14960, 68, 66, 131, 148letrd 9737 . 2  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
( ( (ψ `  y )  +  y )  x.  ( log `  y ) ) )
1502, 3, 40, 50, 59, 149lo1bddrp 13310 1  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
c )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    + caddc 9494    x. cmul 9496   +oocpnf 9624    < clt 9627    <_ cle 9628    - cmin 9804    / cdiv 10205   NNcn 10535   2c2 10584   RR+crp 11219   (,)cioo 11528   ...cfz 11671   |_cfl 11894   abscabs 13029   <_O(1)clo1 13272   sum_csu 13470   logclog 22686  Λcvma 23109  ψcchp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-o1 13275  df-lo1 13276  df-sum 13471  df-ef 13664  df-e 13665  df-sin 13666  df-cos 13667  df-pi 13669  df-dvds 13847  df-gcd 14003  df-prm 14076  df-pc 14219  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-cmp 19669  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022  df-log 22688  df-cxp 22689  df-em 23066  df-cht 23114  df-vma 23115  df-chp 23116  df-ppi 23117  df-mu 23118
This theorem is referenced by:  pntlemp  23539
  Copyright terms: Public domain W3C validator