MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Visualization version   Unicode version

Theorem pntrlog2bnd 24422
Description: A bound on  R ( x ) log ^
2 ( x ). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrlog2bnd  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
c )
Distinct variable groups:    x, n, c, R    a, c, n, x, A
Allowed substitution hint:    R( a)

Proof of Theorem pntrlog2bnd
Dummy variables  i 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 11696 . . 3  |-  ( 1 (,) +oo )  C_  RR
21a1i 11 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 (,) +oo )  C_  RR )
3 1red 9658 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
42sselda 3432 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  x  e.  RR )
5 1rp 11306 . . . . . . . . . 10  |-  1  e.  RR+
65a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  e.  RR+ )
7 1red 9658 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  e.  RR )
8 eliooord 11694 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
98adantl 468 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( 1  <  x  /\  x  < +oo ) )
109simpld 461 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  <  x )
117, 4, 10ltled 9783 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  1  <_  x )
124, 6, 11rpgecld 11377 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  x  e.  RR+ )
13 pntpbnd.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1413pntrf 24401 . . . . . . . . 9  |-  R : RR+
--> RR
1514ffvelrni 6021 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1612, 15syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( R `  x )  e.  RR )
1716recnd 9669 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( R `  x )  e.  CC )
1817abscld 13498 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( abs `  ( R `  x
) )  e.  RR )
1912relogcld 23572 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( log `  x )  e.  RR )
2018, 19remulcld 9671 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  e.  RR )
21 2re 10679 . . . . . . 7  |-  2  e.  RR
2221a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  2  e.  RR )
234, 10rplogcld 23578 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( log `  x )  e.  RR+ )
2422, 23rerpdivcld 11369 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( 2  /  ( log `  x
) )  e.  RR )
25 fzfid 12186 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( 1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
2612adantr 467 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  x  e.  RR+ )
27 elfznn 11828 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) )  ->  n  e.  NN )
2827adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
2928nnrpd 11339 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR+ )
3026, 29rpdivcld 11358 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( x  /  n )  e.  RR+ )
3114ffvelrni 6021 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3230, 31syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3332recnd 9669 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3433abscld 13498 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
3529relogcld 23572 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( log `  n )  e.  RR )
3634, 35remulcld 9671 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3725, 36fsumrecl 13800 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3824, 37remulcld 9671 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
3920, 38resubcld 10047 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
4039, 12rerpdivcld 11369 . 2  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,) +oo )
)  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
4113pntrmax 24402 . . 3  |-  E. c  e.  RR+  A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  c
42 eqid 2451 . . . . 5  |-  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
)  x.  ( ( log `  i )  +  (ψ `  (
a  /  i ) ) ) ) )  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_
`  a ) ) ( (Λ `  i
)  x.  ( ( log `  i )  +  (ψ `  (
a  /  i ) ) ) ) )
43 eqid 2451 . . . . 5  |-  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
44 simprl 764 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  c  e.  RR+ )
45 simprr 766 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c )
46 simpll 760 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  A  e.  RR )
47 simplr 762 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  1  <_  A
)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 24421 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
4948rexlimdvaa 2880 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( E. c  e.  RR+  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c  ->  (
x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) ) )
5041, 49mpi 20 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
51 simprl 764 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  y  e.  RR )
52 chpcl 24051 . . . . 5  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
5351, 52syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  (ψ `  y
)  e.  RR )
5453, 51readdcld 9670 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( (ψ `  y )  +  y )  e.  RR )
555a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  e.  RR+ )
56 simprr 766 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  <_  y )
5751, 55, 56rpgecld 11377 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  y  e.  RR+ )
5857relogcld 23572 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( log `  y )  e.  RR )
5954, 58remulcld 9671 . 2  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  RR )
6040adantr 467 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
6153ad2ant2r 753 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  RR )
62 simprll 772 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
6361, 62readdcld 9670 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  +  y )  e.  RR )
6457ad2ant2r 753 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR+ )
6564relogcld 23572 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  RR )
6663, 65remulcld 9671 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  RR )
6712adantr 467 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
6866, 67rerpdivcld 11369 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  e.  RR )
6916adantr 467 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  e.  RR )
7069recnd 9669 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  e.  CC )
7170abscld 13498 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  e.  RR )
7267relogcld 23572 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR )
7371, 72remulcld 9671 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  e.  RR )
7424adantr 467 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  /  ( log `  x
) )  e.  RR )
7537adantr 467 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
7674, 75remulcld 9671 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
7773, 76resubcld 10047 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
7821a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
794adantr 467 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
8010adantr 467 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <  x )
8179, 80rplogcld 23578 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR+ )
82 2rp 11307 . . . . . . . . . 10  |-  2  e.  RR+
8382a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR+ )
8483rpge0d 11345 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  2 )
8578, 81, 84divge0d 11378 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( 2  /  ( log `  x ) ) )
86 fzfid 12186 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
8736adantlr 721 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
8833adantlr 721 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
8988abscld 13498 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
9029adantlr 721 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR+ )
9190relogcld 23572 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( log `  n )  e.  RR )
9288absge0d 13506 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
9390rpred 11341 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR )
9427adantl 468 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
9594nnge1d 10652 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  1  <_  n )
9693, 95logge0d 23579 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( log `  n ) )
9789, 91, 92, 96mulge0d 10190 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
9886, 87, 97fsumge0 13855 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  sum_
n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
9974, 75, 85, 98mulge0d 10190 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
10073, 76subge02d 10205 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  <_  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  <->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) ) ) )
10199, 100mpbid 214 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) ) )
10270absge0d 13506 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( abs `  ( R `
 x ) ) )
10381rpge0d 11345 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  x ) )
104 chpcl 24051 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
10579, 104syl 17 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  RR )
106105, 79readdcld 9670 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  +  x
)  e.  RR )
10713pntrval 24400 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
10867, 107syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x ) )
109108fveq2d 5869 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  =  ( abs `  ( (ψ `  x )  -  x
) ) )
110105recnd 9669 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  CC )
11179recnd 9669 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  CC )
112110, 111abs2dif2d 13520 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( (ψ `  x
)  -  x ) )  <_  ( ( abs `  (ψ `  x
) )  +  ( abs `  x ) ) )
113 chpge0 24053 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
11479, 113syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  x ) )
115105, 114absidd 13484 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  (ψ `  x )
)  =  (ψ `  x ) )
11667rpge0d 11345 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  x )
11779, 116absidd 13484 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  x )  =  x )
118115, 117oveq12d 6308 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  (ψ `  x
) )  +  ( abs `  x ) )  =  ( (ψ `  x )  +  x
) )
119112, 118breqtrd 4427 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( (ψ `  x
)  -  x ) )  <_  ( (ψ `  x )  +  x
) )
120109, 119eqbrtrd 4423 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  <_  (
(ψ `  x )  +  x ) )
121 simprr 766 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
12279, 62, 121ltled 9783 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
123 chpwordi 24084 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (ψ `  x )  <_  (ψ `  y ) )
12479, 62, 122, 123syl3anc 1268 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  <_  (ψ `  y
) )
125105, 79, 61, 62, 124, 122le2addd 10232 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  +  x
)  <_  ( (ψ `  y )  +  y ) )
12671, 106, 63, 120, 125letrd 9792 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  <_  (
(ψ `  y )  +  y ) )
12767, 64logled 23576 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( x  <_  y  <->  ( log `  x
)  <_  ( log `  y ) ) )
128122, 127mpbid 214 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  <_  ( log `  y ) )
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 10549 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  <_  (
( (ψ `  y
)  +  y )  x.  ( log `  y
) ) )
13077, 73, 66, 101, 129letrd 9792 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( (ψ `  y )  +  y )  x.  ( log `  y ) ) )
13177, 66, 67, 130lediv1dd 11396 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
( ( ( (ψ `  y )  +  y )  x.  ( log `  y ) )  /  x ) )
1325a1i 11 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  e.  RR+ )
133 chpge0 24053 . . . . . . . 8  |-  ( y  e.  RR  ->  0  <_  (ψ `  y )
)
13462, 133syl 17 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  y ) )
13564rpge0d 11345 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  y )
13661, 62, 134, 135addge0d 10189 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( (ψ `  y )  +  y ) )
137 simprlr 773 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  y )
13862, 137logge0d 23579 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  y ) )
13963, 65, 136, 138mulge0d 10190 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( (ψ `  y
)  +  y )  x.  ( log `  y
) ) )
14011adantr 467 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  x )
141132, 67, 66, 139, 140lediv2ad 11363 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  <_  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  1
) )
14261recnd 9669 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  CC )
14362recnd 9669 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  CC )
144142, 143addcld 9662 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  +  y )  e.  CC )
14565recnd 9669 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  CC )
146144, 145mulcld 9663 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  CC )
147146div1d 10375 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  1
)  =  ( ( (ψ `  y )  +  y )  x.  ( log `  y
) ) )
148141, 147breqtrd 4427 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  <_  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) ) )
14960, 68, 66, 131, 148letrd 9792 . 2  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
( ( (ψ `  y )  +  y )  x.  ( log `  y ) ) )
1502, 3, 40, 50, 59, 149lo1bddrp 13589 1  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
c )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738    C_ wss 3404   ifcif 3881   class class class wbr 4402    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544   +oocpnf 9672    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   RR+crp 11302   (,)cioo 11635   ...cfz 11784   |_cfl 12026   abscabs 13297   <_O(1)clo1 13551   sum_csu 13752   logclog 23504  Λcvma 24018  ψcchp 24019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-o1 13554  df-lo1 13555  df-sum 13753  df-ef 14121  df-e 14122  df-sin 14123  df-cos 14124  df-pi 14126  df-dvds 14306  df-gcd 14469  df-prm 14623  df-pc 14787  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506  df-cxp 23507  df-em 23918  df-cht 24023  df-vma 24024  df-chp 24025  df-ppi 24026  df-mu 24027
This theorem is referenced by:  pntlemp  24448
  Copyright terms: Public domain W3C validator