MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd Structured version   Unicode version

Theorem pntpbnd 24154
Description: Lemma for pnt 24180. Establish smallness of  R at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntibnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntpbnd  |-  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)
Distinct variable groups:    k, a, n, x, y    e, c, k, n, x, y, R
Allowed substitution hint:    R( a)

Proof of Theorem pntpbnd
Dummy variables  d 
i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntibnd.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrsumbnd2 24133 . 2  |-  E. d  e.  RR+  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d
3 simpl 455 . . . . 5  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  -> 
d  e.  RR+ )
4 2rp 11270 . . . . 5  |-  2  e.  RR+
5 rpaddcl 11286 . . . . 5  |-  ( ( d  e.  RR+  /\  2  e.  RR+ )  ->  (
d  +  2 )  e.  RR+ )
63, 4, 5sylancl 660 . . . 4  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  -> 
( d  +  2 )  e.  RR+ )
7 2re 10646 . . . . . . . 8  |-  2  e.  RR
8 elioore 11612 . . . . . . . . . 10  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR )
98adantl 464 . . . . . . . . 9  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  e  e.  RR )
10 eliooord 11638 . . . . . . . . . . 11  |-  ( e  e.  ( 0 (,) 1 )  ->  (
0  <  e  /\  e  <  1 ) )
1110adantl 464 . . . . . . . . . 10  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  (
0  <  e  /\  e  <  1 ) )
1211simpld 457 . . . . . . . . 9  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  0  <  e )
139, 12elrpd 11301 . . . . . . . 8  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  e  e.  RR+ )
14 rerpdivcl 11293 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  e  e.  RR+ )  -> 
( 2  /  e
)  e.  RR )
157, 13, 14sylancr 661 . . . . . . 7  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  (
2  /  e )  e.  RR )
1615rpefcld 14049 . . . . . 6  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  ( exp `  ( 2  / 
e ) )  e.  RR+ )
17 simpllr 761 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  e  e.  ( 0 (,) 1
) )
18 eqid 2402 . . . . . . . . 9  |-  ( exp `  ( 2  /  e
) )  =  ( exp `  ( 2  /  e ) )
19 simplrr 763 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  y  e.  ( ( exp `  (
2  /  e ) ) (,) +oo )
)
20 simp-4l 768 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  d  e.  RR+ )
21 simp-4r 769 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )
22 eqid 2402 . . . . . . . . 9  |-  ( d  +  2 )  =  ( d  +  2 )
23 simplrl 762 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )
)
24 simpr 459 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  -.  E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )
251, 17, 18, 19, 20, 21, 22, 23, 24pntpbnd2 24153 . . . . . . . 8  |-  -.  (
( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
26 iman 422 . . . . . . . 8  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  ->  E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )  <->  -.  (
( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
) )
2725, 26mpbir 209 . . . . . . 7  |-  ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,) +oo )
) )  ->  E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )
2827ralrimivva 2825 . . . . . 6  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
( exp `  (
2  /  e ) ) (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
29 oveq1 6285 . . . . . . . . 9  |-  ( x  =  ( exp `  (
2  /  e ) )  ->  ( x (,) +oo )  =  ( ( exp `  (
2  /  e ) ) (,) +oo )
)
3029raleqdv 3010 . . . . . . . 8  |-  ( x  =  ( exp `  (
2  /  e ) )  ->  ( A. y  e.  ( x (,) +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e )  <->  A. y  e.  ( ( exp `  (
2  /  e ) ) (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
3130ralbidv 2843 . . . . . . 7  |-  ( x  =  ( exp `  (
2  /  e ) )  ->  ( A. k  e.  ( ( exp `  ( ( d  +  2 )  / 
e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)  <->  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
( exp `  (
2  /  e ) ) (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
3231rspcev 3160 . . . . . 6  |-  ( ( ( exp `  (
2  /  e ) )  e.  RR+  /\  A. k  e.  ( ( exp `  ( ( d  +  2 )  / 
e ) ) [,) +oo ) A. y  e.  ( ( exp `  (
2  /  e ) ) (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
3316, 28, 32syl2anc 659 . . . . 5  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
3433ralrimiva 2818 . . . 4  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  ->  A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )
35 oveq1 6285 . . . . . . . . . 10  |-  ( c  =  ( d  +  2 )  ->  (
c  /  e )  =  ( ( d  +  2 )  / 
e ) )
3635fveq2d 5853 . . . . . . . . 9  |-  ( c  =  ( d  +  2 )  ->  ( exp `  ( c  / 
e ) )  =  ( exp `  (
( d  +  2 )  /  e ) ) )
3736oveq1d 6293 . . . . . . . 8  |-  ( c  =  ( d  +  2 )  ->  (
( exp `  (
c  /  e ) ) [,) +oo )  =  ( ( exp `  ( ( d  +  2 )  /  e
) ) [,) +oo ) )
3837raleqdv 3010 . . . . . . 7  |-  ( c  =  ( d  +  2 )  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)  <->  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
3938rexbidv 2918 . . . . . 6  |-  ( c  =  ( d  +  2 )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) ) )
4039ralbidv 2843 . . . . 5  |-  ( c  =  ( d  +  2 )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e )  <->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
4140rspcev 3160 . . . 4  |-  ( ( ( d  +  2 )  e.  RR+  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )  ->  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
426, 34, 41syl2anc 659 . . 3  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  ->  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
4342rexlimiva 2892 . 2  |-  ( E. d  e.  RR+  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d  ->  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
442, 43ax-mp 5 1  |-  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   class class class wbr 4395    |-> cmpt 4453   ` cfv 5569  (class class class)co 6278   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527   +oocpnf 9655    < clt 9658    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   2c2 10626   ZZcz 10905   RR+crp 11265   (,)cioo 11582   [,)cico 11584   ...cfz 11726   abscabs 13216   sum_csu 13657   expce 14006  ψcchp 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-fac 12398  df-bc 12425  df-hash 12453  df-shft 13049  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-limsup 13443  df-clim 13460  df-rlim 13461  df-o1 13462  df-lo1 13463  df-sum 13658  df-ef 14012  df-e 14013  df-sin 14014  df-cos 14015  df-pi 14017  df-dvds 14196  df-gcd 14354  df-prm 14427  df-pc 14570  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lp 19930  df-perf 19931  df-cn 20021  df-cnp 20022  df-haus 20109  df-cmp 20180  df-tx 20355  df-hmeo 20548  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-limc 22562  df-dv 22563  df-log 23236  df-cxp 23237  df-em 23648  df-cht 23751  df-vma 23752  df-chp 23753  df-ppi 23754
This theorem is referenced by:  pntibnd  24159
  Copyright terms: Public domain W3C validator