MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemq Structured version   Unicode version

Theorem pntlemq 22968
Description: Lemma for pntlemj 22970. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntlem1.K  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntlem1.o  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
pntlem1.v  |-  ( ph  ->  V  e.  RR+ )
pntlem1.V  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
pntlem1.j  |-  ( ph  ->  J  e.  ( M..^ N ) )
pntlem1.i  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
Assertion
Ref Expression
pntlemq  |-  ( ph  ->  I  C_  O )
Distinct variable groups:    z, C    y, z, J    y, u, z, L    y, K, z   
z, M    z, O    z, N    u, R, y, z    u, V    z, U    z, W    y, X, z    z, Y    u, a,
y, z, E    u, Z, z
Allowed substitution hints:    ph( y, z, u, a)    A( y, z, u, a)    B( y, z, u, a)    C( y, u, a)    D( y, z, u, a)    R( a)    U( y, u, a)    F( y, z, u, a)    I( y, z, u, a)    J( u, a)    K( u, a)    L( a)    M( y, u, a)    N( y, u, a)    O( y, u, a)    V( y, z, a)    W( y, u, a)    X( u, a)    Y( y, u, a)    Z( y, a)

Proof of Theorem pntlemq
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . . . . . . . . 10  |-  D  =  ( A  +  1 )
6 pntlem1.f . . . . . . . . . 10  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . . . . . . . . 10  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . . . . . . . . 10  |-  E  =  ( U  /  D
)
10 pntlem1.k . . . . . . . . . 10  |-  K  =  ( exp `  ( B  /  E ) )
11 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
12 pntlem1.x . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
13 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
14 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
15 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 22964 . . . . . . . . 9  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
1716simp1d 1000 . . . . . . . 8  |-  ( ph  ->  Z  e.  RR+ )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 22962 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1918simp2d 1001 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR+ )
20 pntlem1.j . . . . . . . . . . 11  |-  ( ph  ->  J  e.  ( M..^ N ) )
21 elfzoelz 11656 . . . . . . . . . . 11  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ZZ )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  e.  ZZ )
2322peano2zd 10853 . . . . . . . . 9  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
2419, 23rpexpcld 12134 . . . . . . . 8  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR+ )
2517, 24rpdivcld 11147 . . . . . . 7  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR+ )
2625rpred 11130 . . . . . 6  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR )
2726flcld 11751 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  e.  ZZ )
28 1rp 11098 . . . . . . . . . 10  |-  1  e.  RR+
291, 2, 3, 4, 5, 6pntlemd 22961 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
3029simp1d 1000 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  RR+ )
3118simp1d 1000 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR+ )
3230, 31rpmulcld 11146 . . . . . . . . . 10  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
33 rpaddcl 11114 . . . . . . . . . 10  |-  ( ( 1  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
1  +  ( L  x.  E ) )  e.  RR+ )
3428, 32, 33sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( 1  +  ( L  x.  E ) )  e.  RR+ )
35 pntlem1.v . . . . . . . . 9  |-  ( ph  ->  V  e.  RR+ )
3634, 35rpmulcld 11146 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR+ )
3717, 36rpdivcld 11147 . . . . . . 7  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR+ )
3837rpred 11130 . . . . . 6  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
3938flcld 11751 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ZZ )
4036rpred 11130 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )
4124rpred 11130 . . . . . . . 8  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR )
42 pntlem1.V . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
4342simpld 459 . . . . . . . . . 10  |-  ( ph  ->  ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) ) )
4443simprd 463 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) )
4519rpcnd 11132 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
4619, 22rpexpcld 12134 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ^ J
)  e.  RR+ )
4746rpcnd 11132 . . . . . . . . . . 11  |-  ( ph  ->  ( K ^ J
)  e.  CC )
4845, 47mulcomd 9510 . . . . . . . . . 10  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( ( K ^ J )  x.  K ) )
49 pntlem1.m . . . . . . . . . . . . . . 15  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
50 pntlem1.n . . . . . . . . . . . . . . 15  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 49, 50pntlemg 22965 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
5251simp1d 1000 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN )
53 elfzouz 11660 . . . . . . . . . . . . . 14  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( ZZ>= `  M )
)
5420, 53syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  ( ZZ>= `  M ) )
55 eluznn 11028 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
5652, 54, 55syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  NN )
5756nnnn0d 10739 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  NN0 )
5845, 57expp1d 12112 . . . . . . . . . 10  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  =  ( ( K ^ J )  x.  K ) )
5948, 58eqtr4d 2495 . . . . . . . . 9  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( K ^
( J  +  1 ) ) )
6044, 59breqtrd 4416 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K ^ ( J  + 
1 ) ) )
6140, 41, 60ltled 9625 . . . . . . 7  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( K ^ ( J  + 
1 ) ) )
6236, 24, 17lediv2d 11154 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  <_  ( K ^ ( J  + 
1 ) )  <->  ( Z  /  ( K ^
( J  +  1 ) ) )  <_ 
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
6361, 62mpbid 210 . . . . . 6  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  <_  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )
64 flwordi 11763 . . . . . 6  |-  ( ( ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR  /\  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  /\  ( Z  /  ( K ^
( J  +  1 ) ) )  <_ 
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  ->  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  <_ 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
6526, 38, 63, 64syl3anc 1219 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  <_  ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
66 eluz2 10970 . . . . 5  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) ) )  <-> 
( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  e.  ZZ  /\  ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ZZ  /\  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  <_ 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) ) )
6727, 39, 65, 66syl3anbrc 1172 . . . 4  |-  ( ph  ->  ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) ) ) )
68 eluzp1p1 10989 . . . 4  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) ) )  ->  ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 )  e.  (
ZZ>= `  ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
69 fzss1 11600 . . . 4  |-  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) )  -> 
( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
7067, 68, 693syl 20 . . 3  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
7117, 35rpdivcld 11147 . . . . . . 7  |-  ( ph  ->  ( Z  /  V
)  e.  RR+ )
7271rpred 11130 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  e.  RR )
7372flcld 11751 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  V ) )  e.  ZZ )
7417, 46rpdivcld 11147 . . . . . . 7  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR+ )
7574rpred 11130 . . . . . 6  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR )
7675flcld 11751 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ZZ )
7746rpred 11130 . . . . . . . 8  |-  ( ph  ->  ( K ^ J
)  e.  RR )
7835rpred 11130 . . . . . . . 8  |-  ( ph  ->  V  e.  RR )
7943simpld 459 . . . . . . . 8  |-  ( ph  ->  ( K ^ J
)  <  V )
8077, 78, 79ltled 9625 . . . . . . 7  |-  ( ph  ->  ( K ^ J
)  <_  V )
8146, 35, 17lediv2d 11154 . . . . . . 7  |-  ( ph  ->  ( ( K ^ J )  <_  V  <->  ( Z  /  V )  <_  ( Z  / 
( K ^ J
) ) ) )
8280, 81mpbid 210 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  <_  ( Z  /  ( K ^ J ) ) )
83 flwordi 11763 . . . . . 6  |-  ( ( ( Z  /  V
)  e.  RR  /\  ( Z  /  ( K ^ J ) )  e.  RR  /\  ( Z  /  V )  <_ 
( Z  /  ( K ^ J ) ) )  ->  ( |_ `  ( Z  /  V
) )  <_  ( |_ `  ( Z  / 
( K ^ J
) ) ) )
8472, 75, 82, 83syl3anc 1219 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  V ) )  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
85 eluz2 10970 . . . . 5  |-  ( ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  /  V ) ) )  <-> 
( ( |_ `  ( Z  /  V
) )  e.  ZZ  /\  ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ZZ  /\  ( |_ `  ( Z  /  V ) )  <_ 
( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
8673, 76, 84, 85syl3anbrc 1172 . . . 4  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  /  V ) ) ) )
87 fzss2 11601 . . . 4  |-  ( ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  /  V ) ) )  ->  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  C_  ( (
( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
8886, 87syl 16 . . 3  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
8970, 88sstrd 3466 . 2  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
90 pntlem1.i . 2  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
91 pntlem1.o . 2  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
9289, 90, 913sstr4g 3497 1  |-  ( ph  ->  I  C_  O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796    C_ wss 3428   class class class wbr 4392    |-> cmpt 4450   ` cfv 5518  (class class class)co 6192   RRcr 9384   0cc0 9385   1c1 9386    + caddc 9388    x. cmul 9390   +oocpnf 9518    < clt 9521    <_ cle 9522    - cmin 9698    / cdiv 10096   NNcn 10425   2c2 10474   3c3 10475   4c4 10476   ZZcz 10749  ;cdc 10858   ZZ>=cuz 10964   RR+crp 11094   (,)cioo 11403   [,)cico 11405   [,]cicc 11406   ...cfz 11540  ..^cfzo 11651   |_cfl 11743   ^cexp 11968   sqrcsqr 12826   abscabs 12827   expce 13451   _eceu 13452   logclog 22124  ψcchp 22548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463  ax-addf 9464  ax-mulf 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-of 6422  df-om 6579  df-1st 6679  df-2nd 6680  df-supp 6793  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-ixp 7366  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-fsupp 7724  df-fi 7764  df-sup 7794  df-oi 7827  df-card 8212  df-cda 8440  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-4 10485  df-5 10486  df-6 10487  df-7 10488  df-8 10489  df-9 10490  df-10 10491  df-n0 10683  df-z 10750  df-dec 10859  df-uz 10965  df-q 11057  df-rp 11095  df-xneg 11192  df-xadd 11193  df-xmul 11194  df-ioo 11407  df-ioc 11408  df-ico 11409  df-icc 11410  df-fz 11541  df-fzo 11652  df-fl 11745  df-mod 11812  df-seq 11910  df-exp 11969  df-fac 12155  df-bc 12182  df-hash 12207  df-shft 12660  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-limsup 13053  df-clim 13070  df-rlim 13071  df-sum 13268  df-ef 13457  df-e 13458  df-sin 13459  df-cos 13460  df-pi 13462  df-struct 14280  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-starv 14357  df-sca 14358  df-vsca 14359  df-ip 14360  df-tset 14361  df-ple 14362  df-ds 14364  df-unif 14365  df-hom 14366  df-cco 14367  df-rest 14465  df-topn 14466  df-0g 14484  df-gsum 14485  df-topgen 14486  df-pt 14487  df-prds 14490  df-xrs 14544  df-qtop 14549  df-imas 14550  df-xps 14552  df-mre 14628  df-mrc 14629  df-acs 14631  df-mnd 15519  df-submnd 15569  df-mulg 15652  df-cntz 15939  df-cmn 16385  df-psmet 17920  df-xmet 17921  df-met 17922  df-bl 17923  df-mopn 17924  df-fbas 17925  df-fg 17926  df-cnfld 17930  df-top 18621  df-bases 18623  df-topon 18624  df-topsp 18625  df-cld 18741  df-ntr 18742  df-cls 18743  df-nei 18820  df-lp 18858  df-perf 18859  df-cn 18949  df-cnp 18950  df-haus 19037  df-tx 19253  df-hmeo 19446  df-fil 19537  df-fm 19629  df-flim 19630  df-flf 19631  df-xms 20013  df-ms 20014  df-tms 20015  df-cncf 20572  df-limc 21459  df-dv 21460  df-log 22126
This theorem is referenced by:  pntlemj  22970
  Copyright terms: Public domain W3C validator