MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemq Unicode version

Theorem pntlemq 21248
Description: Lemma for pntlemj 21250. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntlem1.K  |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntlem1.o  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
pntlem1.v  |-  ( ph  ->  V  e.  RR+ )
pntlem1.V  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
pntlem1.j  |-  ( ph  ->  J  e.  ( M..^ N ) )
pntlem1.i  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
Assertion
Ref Expression
pntlemq  |-  ( ph  ->  I  C_  O )
Distinct variable groups:    z, C    y, z, J    y, u, z, L    y, K, z   
z, M    z, O    z, N    u, R, y, z    u, V    z, U    z, W    y, X, z    z, Y    u, a,
y, z, E    u, Z, z
Allowed substitution hints:    ph( y, z, u, a)    A( y, z, u, a)    B( y, z, u, a)    C( y, u, a)    D( y, z, u, a)    R( a)    U( y, u, a)    F( y, z, u, a)    I( y, z, u, a)    J( u, a)    K( u, a)    L( a)    M( y, u, a)    N( y, u, a)    O( y, u, a)    V( y, z, a)    W( y, u, a)    X( u, a)    Y( y, u, a)    Z( y, a)

Proof of Theorem pntlemq
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . . . . . . . . 10  |-  D  =  ( A  +  1 )
6 pntlem1.f . . . . . . . . . 10  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . . . . . . . . 10  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . . . . . . . . 10  |-  E  =  ( U  /  D
)
10 pntlem1.k . . . . . . . . . 10  |-  K  =  ( exp `  ( B  /  E ) )
11 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
12 pntlem1.x . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
13 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
14 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
15 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 21244 . . . . . . . . 9  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
1716simp1d 969 . . . . . . . 8  |-  ( ph  ->  Z  e.  RR+ )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 21242 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1918simp2d 970 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR+ )
20 pntlem1.j . . . . . . . . . . 11  |-  ( ph  ->  J  e.  ( M..^ N ) )
21 elfzoelz 11095 . . . . . . . . . . 11  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ZZ )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  e.  ZZ )
2322peano2zd 10334 . . . . . . . . 9  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
2419, 23rpexpcld 11501 . . . . . . . 8  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR+ )
2517, 24rpdivcld 10621 . . . . . . 7  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR+ )
2625rpred 10604 . . . . . 6  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR )
2726flcld 11162 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  e.  ZZ )
28 1rp 10572 . . . . . . . . . 10  |-  1  e.  RR+
291, 2, 3, 4, 5, 6pntlemd 21241 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
3029simp1d 969 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  RR+ )
3118simp1d 969 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR+ )
3230, 31rpmulcld 10620 . . . . . . . . . 10  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
33 rpaddcl 10588 . . . . . . . . . 10  |-  ( ( 1  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
1  +  ( L  x.  E ) )  e.  RR+ )
3428, 32, 33sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( 1  +  ( L  x.  E ) )  e.  RR+ )
35 pntlem1.v . . . . . . . . 9  |-  ( ph  ->  V  e.  RR+ )
3634, 35rpmulcld 10620 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR+ )
3717, 36rpdivcld 10621 . . . . . . 7  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR+ )
3837rpred 10604 . . . . . 6  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
3938flcld 11162 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ZZ )
4036rpred 10604 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )
4124rpred 10604 . . . . . . . 8  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR )
42 pntlem1.V . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
4342simpld 446 . . . . . . . . . 10  |-  ( ph  ->  ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) ) )
4443simprd 450 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) )
4519rpcnd 10606 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
4619, 22rpexpcld 11501 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ^ J
)  e.  RR+ )
4746rpcnd 10606 . . . . . . . . . . 11  |-  ( ph  ->  ( K ^ J
)  e.  CC )
4845, 47mulcomd 9065 . . . . . . . . . 10  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( ( K ^ J )  x.  K ) )
49 pntlem1.m . . . . . . . . . . . . . . 15  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
50 pntlem1.n . . . . . . . . . . . . . . 15  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 49, 50pntlemg 21245 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
5251simp1d 969 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN )
53 elfzouz 11099 . . . . . . . . . . . . . 14  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( ZZ>= `  M )
)
5420, 53syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  ( ZZ>= `  M ) )
55 nnuz 10477 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
5655uztrn2 10459 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
5752, 54, 56syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  NN )
5857nnnn0d 10230 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  NN0 )
5945, 58expp1d 11479 . . . . . . . . . 10  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  =  ( ( K ^ J )  x.  K ) )
6048, 59eqtr4d 2439 . . . . . . . . 9  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( K ^
( J  +  1 ) ) )
6144, 60breqtrd 4196 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K ^ ( J  + 
1 ) ) )
6240, 41, 61ltled 9177 . . . . . . 7  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( K ^ ( J  + 
1 ) ) )
6336, 24, 17lediv2d 10628 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  <_  ( K ^ ( J  + 
1 ) )  <->  ( Z  /  ( K ^
( J  +  1 ) ) )  <_ 
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
6462, 63mpbid 202 . . . . . 6  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  <_  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )
65 flwordi 11174 . . . . . 6  |-  ( ( ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR  /\  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  /\  ( Z  /  ( K ^
( J  +  1 ) ) )  <_ 
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  ->  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  <_ 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
6626, 38, 64, 65syl3anc 1184 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  <_  ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
67 eluz2 10450 . . . . 5  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) ) )  <-> 
( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  e.  ZZ  /\  ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ZZ  /\  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  <_ 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) ) )
6827, 39, 66, 67syl3anbrc 1138 . . . 4  |-  ( ph  ->  ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) ) ) )
69 eluzp1p1 10467 . . . 4  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) ) )  ->  ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 )  e.  (
ZZ>= `  ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
70 fzss1 11047 . . . 4  |-  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) )  -> 
( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
7168, 69, 703syl 19 . . 3  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
7217, 35rpdivcld 10621 . . . . . . 7  |-  ( ph  ->  ( Z  /  V
)  e.  RR+ )
7372rpred 10604 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  e.  RR )
7473flcld 11162 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  V ) )  e.  ZZ )
7517, 46rpdivcld 10621 . . . . . . 7  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR+ )
7675rpred 10604 . . . . . 6  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR )
7776flcld 11162 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ZZ )
7846rpred 10604 . . . . . . . 8  |-  ( ph  ->  ( K ^ J
)  e.  RR )
7935rpred 10604 . . . . . . . 8  |-  ( ph  ->  V  e.  RR )
8043simpld 446 . . . . . . . 8  |-  ( ph  ->  ( K ^ J
)  <  V )
8178, 79, 80ltled 9177 . . . . . . 7  |-  ( ph  ->  ( K ^ J
)  <_  V )
8246, 35, 17lediv2d 10628 . . . . . . 7  |-  ( ph  ->  ( ( K ^ J )  <_  V  <->  ( Z  /  V )  <_  ( Z  / 
( K ^ J
) ) ) )
8381, 82mpbid 202 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  <_  ( Z  /  ( K ^ J ) ) )
84 flwordi 11174 . . . . . 6  |-  ( ( ( Z  /  V
)  e.  RR  /\  ( Z  /  ( K ^ J ) )  e.  RR  /\  ( Z  /  V )  <_ 
( Z  /  ( K ^ J ) ) )  ->  ( |_ `  ( Z  /  V
) )  <_  ( |_ `  ( Z  / 
( K ^ J
) ) ) )
8573, 76, 83, 84syl3anc 1184 . . . . 5  |-  ( ph  ->  ( |_ `  ( Z  /  V ) )  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
86 eluz2 10450 . . . . 5  |-  ( ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  /  V ) ) )  <-> 
( ( |_ `  ( Z  /  V
) )  e.  ZZ  /\  ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ZZ  /\  ( |_ `  ( Z  /  V ) )  <_ 
( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
8774, 77, 85, 86syl3anbrc 1138 . . . 4  |-  ( ph  ->  ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  /  V ) ) ) )
88 fzss2 11048 . . . 4  |-  ( ( |_ `  ( Z  /  ( K ^ J ) ) )  e.  ( ZZ>= `  ( |_ `  ( Z  /  V ) ) )  ->  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  C_  ( (
( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
8987, 88syl 16 . . 3  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
9071, 89sstrd 3318 . 2  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) 
C_  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
91 pntlem1.i . 2  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
92 pntlem1.o . 2  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
9390, 91, 923sstr4g 3349 1  |-  ( ph  ->  I  C_  O )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   4c4 10007   ZZcz 10238  ;cdc 10338   ZZ>=cuz 10444   RR+crp 10568   (,)cioo 10872   [,)cico 10874   [,]cicc 10875   ...cfz 10999  ..^cfzo 11090   |_cfl 11156   ^cexp 11337   sqrcsqr 11993   abscabs 11994   expce 12619   _eceu 12620   logclog 20405  ψcchp 20828
This theorem is referenced by:  pntlemj  21250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407
  Copyright terms: Public domain W3C validator