MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Unicode version

Theorem pntlemn 22992
Description: Lemma for pnt 23006. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
Assertion
Ref Expression
pntlemn  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Distinct variable groups:    z, C    z, J    z, L    z, K    z, M    z, N    z, R    z, U    z, W    z, X    z, Y    z, a, E    z, Z
Allowed substitution hints:    ph( z, a)    A( z, a)    B( z, a)    C( a)    D( z, a)    R( a)    U( a)    F( z, a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6  |-  ( ph  ->  U  e.  RR+ )
21adantr 465 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR+ )
32rpred 11142 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR )
4 simprl 755 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  NN )
53, 4nndivred 10485 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( U  /  J
)  e.  RR )
6 pntlem1.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
7 pntlem1.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
8 pntlem1.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR+ )
9 pntlem1.l . . . . . . . . . . 11  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
10 pntlem1.d . . . . . . . . . . 11  |-  D  =  ( A  +  1 )
11 pntlem1.f . . . . . . . . . . 11  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
12 pntlem1.u2 . . . . . . . . . . 11  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . 11  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . 11  |-  K  =  ( exp `  ( B  /  E ) )
15 pntlem1.y . . . . . . . . . . 11  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
16 pntlem1.x . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
17 pntlem1.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
18 pntlem1.w . . . . . . . . . . 11  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
19 pntlem1.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 22989 . . . . . . . . . 10  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2120simp1d 1000 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR+ )
2221adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR+ )
234nnrpd 11141 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR+ )
2422, 23rpdivcld 11159 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR+ )
256pntrf 22955 . . . . . . . 8  |-  R : RR+
--> RR
2625ffvelrni 5954 . . . . . . 7  |-  ( ( Z  /  J )  e.  RR+  ->  ( R `
 ( Z  /  J ) )  e.  RR )
2724, 26syl 16 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  RR )
2827, 22rerpdivcld 11169 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  RR )
2928recnd 9527 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  CC )
3029abscld 13044 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  e.  RR )
315, 30resubcld 9891 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( U  /  J )  -  ( abs `  ( ( R `
 ( Z  /  J ) )  /  Z ) ) )  e.  RR )
3223relogcld 22215 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  J
)  e.  RR )
3327recnd 9527 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  CC )
3422rpcnne0d 11151 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  e.  CC  /\  Z  =/=  0 ) )
3523rpcnne0d 11151 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  CC  /\  J  =/=  0 ) )
36 divdiv2 10158 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  ( J  e.  CC  /\  J  =/=  0 ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
3733, 34, 35, 36syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
384nncnd 10453 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  CC )
39 div23 10128 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  J  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4033, 38, 34, 39syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4137, 40eqtrd 2495 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4241fveq2d 5806 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) ) )
4329, 38absmuld 13062 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) )  =  ( ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) ) )
4423rprege0d 11149 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  RR  /\  0  <_  J )
)
45 absid 12907 . . . . . . . 8  |-  ( ( J  e.  RR  /\  0  <_  J )  -> 
( abs `  J
)  =  J )
4644, 45syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  J
)  =  J )
4746oveq2d 6219 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) )  =  ( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J ) )
4842, 43, 473eqtrd 2499 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
) )
4924rpred 11142 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR )
50 simprr 756 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  <_  ( Z  /  Y ) )
5123rpred 11142 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR )
5222rpred 11142 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR )
5315simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
5453adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR+ )
5551, 52, 54lemuldiv2d 11188 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  J  <_  ( Z  /  Y ) ) )
5650, 55mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Y  x.  J
)  <_  Z )
5754rpred 11142 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR )
5857, 52, 23lemuldivd 11187 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  Y  <_  ( Z  /  J ) ) )
5956, 58mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  <_  ( Z  /  J ) )
60 elicopnf 11506 . . . . . . . 8  |-  ( Y  e.  RR  ->  (
( Z  /  J
)  e.  ( Y [,) +oo )  <->  ( ( Z  /  J )  e.  RR  /\  Y  <_ 
( Z  /  J
) ) ) )
6157, 60syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Z  /  J )  e.  ( Y [,) +oo )  <->  ( ( Z  /  J
)  e.  RR  /\  Y  <_  ( Z  /  J ) ) ) )
6249, 59, 61mpbir2and 913 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  ( Y [,) +oo ) )
63 pntlem1.U . . . . . . 7  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6463adantr 465 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  U )
65 fveq2 5802 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  ( R `  z )  =  ( R `  ( Z  /  J
) ) )
66 id 22 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  z  =  ( Z  /  J ) )
6765, 66oveq12d 6221 . . . . . . . . 9  |-  ( z  =  ( Z  /  J )  ->  (
( R `  z
)  /  z )  =  ( ( R `
 ( Z  /  J ) )  / 
( Z  /  J
) ) )
6867fveq2d 5806 . . . . . . . 8  |-  ( z  =  ( Z  /  J )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) ) )
6968breq1d 4413 . . . . . . 7  |-  ( z  =  ( Z  /  J )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) ) )  <_  U )
)
7069rspcv 3175 . . . . . 6  |-  ( ( Z  /  J )  e.  ( Y [,) +oo )  ->  ( A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  U  ->  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U ) )
7162, 64, 70sylc 60 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U )
7248, 71eqbrtrrd 4425 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J )  <_  U )
7330, 3, 23lemuldivd 11187 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
)  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7472, 73mpbid 210 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  <_  ( U  /  J ) )
755, 30subge0d 10044 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 0  <_  (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7674, 75mpbird 232 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( ( U  /  J )  -  ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) ) ) )
77 log1 22177 . . 3  |-  ( log `  1 )  =  0
78 nnge1 10463 . . . . 5  |-  ( J  e.  NN  ->  1  <_  J )
7978ad2antrl 727 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
1  <_  J )
80 1rp 11110 . . . . 5  |-  1  e.  RR+
81 logleb 22195 . . . . 5  |-  ( ( 1  e.  RR+  /\  J  e.  RR+ )  ->  (
1  <_  J  <->  ( log `  1 )  <_  ( log `  J ) ) )
8280, 23, 81sylancr 663 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 1  <_  J  <->  ( log `  1 )  <_  ( log `  J
) ) )
8379, 82mpbid 210 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  1
)  <_  ( log `  J ) )
8477, 83syl5eqbrr 4437 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( log `  J ) )
8531, 32, 76, 84mulge0d 10031 1  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   class class class wbr 4403    |-> cmpt 4461   ` cfv 5529  (class class class)co 6203   CCcc 9395   RRcr 9396   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402   +oocpnf 9530    < clt 9533    <_ cle 9534    - cmin 9710    / cdiv 10108   NNcn 10437   2c2 10486   3c3 10487   4c4 10488  ;cdc 10870   RR+crp 11106   (,)cioo 11415   [,)cico 11417   |_cfl 11761   ^cexp 11986   sqrcsqr 12844   abscabs 12845   expce 13469   _eceu 13470   logclog 22149  ψcchp 22573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-addf 9476  ax-mulf 9477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7776  df-sup 7806  df-oi 7839  df-card 8224  df-cda 8452  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-q 11069  df-rp 11107  df-xneg 11204  df-xadd 11205  df-xmul 11206  df-ioo 11419  df-ioc 11420  df-ico 11421  df-icc 11422  df-fz 11559  df-fzo 11670  df-fl 11763  df-mod 11830  df-seq 11928  df-exp 11987  df-fac 12173  df-bc 12200  df-hash 12225  df-shft 12678  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-limsup 13071  df-clim 13088  df-rlim 13089  df-sum 13286  df-ef 13475  df-e 13476  df-sin 13477  df-cos 13478  df-pi 13480  df-dvds 13658  df-gcd 13813  df-prm 13886  df-pc 14026  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-starv 14376  df-sca 14377  df-vsca 14378  df-ip 14379  df-tset 14380  df-ple 14381  df-ds 14383  df-unif 14384  df-hom 14385  df-cco 14386  df-rest 14484  df-topn 14485  df-0g 14503  df-gsum 14504  df-topgen 14505  df-pt 14506  df-prds 14509  df-xrs 14563  df-qtop 14568  df-imas 14569  df-xps 14571  df-mre 14647  df-mrc 14648  df-acs 14650  df-mnd 15538  df-submnd 15588  df-mulg 15671  df-cntz 15958  df-cmn 16404  df-psmet 17944  df-xmet 17945  df-met 17946  df-bl 17947  df-mopn 17948  df-fbas 17949  df-fg 17950  df-cnfld 17954  df-top 18645  df-bases 18647  df-topon 18648  df-topsp 18649  df-cld 18765  df-ntr 18766  df-cls 18767  df-nei 18844  df-lp 18882  df-perf 18883  df-cn 18973  df-cnp 18974  df-haus 19061  df-tx 19277  df-hmeo 19470  df-fil 19561  df-fm 19653  df-flim 19654  df-flf 19655  df-xms 20037  df-ms 20038  df-tms 20039  df-cncf 20596  df-limc 21484  df-dv 21485  df-log 22151  df-vma 22578  df-chp 22579
This theorem is referenced by:  pntlemj  22995  pntlemf  22997
  Copyright terms: Public domain W3C validator