MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Unicode version

Theorem pntlemn 23902
Description: Lemma for pnt 23916. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
Assertion
Ref Expression
pntlemn  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Distinct variable groups:    z, C    z, J    z, L    z, K    z, M    z, N    z, R    z, U    z, W    z, X    z, Y    z, a, E    z, Z
Allowed substitution hints:    ph( z, a)    A( z, a)    B( z, a)    C( a)    D( z, a)    R( a)    U( a)    F( z, a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6  |-  ( ph  ->  U  e.  RR+ )
21adantr 463 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR+ )
32rpred 11177 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR )
4 simprl 754 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  NN )
53, 4nndivred 10501 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( U  /  J
)  e.  RR )
6 pntlem1.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
7 pntlem1.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
8 pntlem1.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR+ )
9 pntlem1.l . . . . . . . . . . 11  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
10 pntlem1.d . . . . . . . . . . 11  |-  D  =  ( A  +  1 )
11 pntlem1.f . . . . . . . . . . 11  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
12 pntlem1.u2 . . . . . . . . . . 11  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . 11  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . 11  |-  K  =  ( exp `  ( B  /  E ) )
15 pntlem1.y . . . . . . . . . . 11  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
16 pntlem1.x . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
17 pntlem1.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
18 pntlem1.w . . . . . . . . . . 11  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
19 pntlem1.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 23899 . . . . . . . . . 10  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2120simp1d 1006 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR+ )
2221adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR+ )
234nnrpd 11175 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR+ )
2422, 23rpdivcld 11194 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR+ )
256pntrf 23865 . . . . . . . 8  |-  R : RR+
--> RR
2625ffvelrni 5932 . . . . . . 7  |-  ( ( Z  /  J )  e.  RR+  ->  ( R `
 ( Z  /  J ) )  e.  RR )
2724, 26syl 16 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  RR )
2827, 22rerpdivcld 11204 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  RR )
2928recnd 9533 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  CC )
3029abscld 13269 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  e.  RR )
315, 30resubcld 9905 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( U  /  J )  -  ( abs `  ( ( R `
 ( Z  /  J ) )  /  Z ) ) )  e.  RR )
3223relogcld 23095 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  J
)  e.  RR )
3327recnd 9533 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  CC )
3422rpcnne0d 11186 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  e.  CC  /\  Z  =/=  0 ) )
3523rpcnne0d 11186 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  CC  /\  J  =/=  0 ) )
36 divdiv2 10173 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  ( J  e.  CC  /\  J  =/=  0 ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
3733, 34, 35, 36syl3anc 1226 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
384nncnd 10468 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  CC )
39 div23 10143 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  J  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4033, 38, 34, 39syl3anc 1226 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4137, 40eqtrd 2423 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4241fveq2d 5778 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) ) )
4329, 38absmuld 13287 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) )  =  ( ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) ) )
4423rprege0d 11184 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  RR  /\  0  <_  J )
)
45 absid 13131 . . . . . . . 8  |-  ( ( J  e.  RR  /\  0  <_  J )  -> 
( abs `  J
)  =  J )
4644, 45syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  J
)  =  J )
4746oveq2d 6212 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) )  =  ( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J ) )
4842, 43, 473eqtrd 2427 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
) )
4924rpred 11177 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR )
50 simprr 755 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  <_  ( Z  /  Y ) )
5123rpred 11177 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR )
5222rpred 11177 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR )
5315simpld 457 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
5453adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR+ )
5551, 52, 54lemuldiv2d 11223 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  J  <_  ( Z  /  Y ) ) )
5650, 55mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Y  x.  J
)  <_  Z )
5754rpred 11177 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR )
5857, 52, 23lemuldivd 11222 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  Y  <_  ( Z  /  J ) ) )
5956, 58mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  <_  ( Z  /  J ) )
60 elicopnf 11541 . . . . . . . 8  |-  ( Y  e.  RR  ->  (
( Z  /  J
)  e.  ( Y [,) +oo )  <->  ( ( Z  /  J )  e.  RR  /\  Y  <_ 
( Z  /  J
) ) ) )
6157, 60syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Z  /  J )  e.  ( Y [,) +oo )  <->  ( ( Z  /  J
)  e.  RR  /\  Y  <_  ( Z  /  J ) ) ) )
6249, 59, 61mpbir2and 920 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  ( Y [,) +oo ) )
63 pntlem1.U . . . . . . 7  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6463adantr 463 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  U )
65 fveq2 5774 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  ( R `  z )  =  ( R `  ( Z  /  J
) ) )
66 id 22 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  z  =  ( Z  /  J ) )
6765, 66oveq12d 6214 . . . . . . . . 9  |-  ( z  =  ( Z  /  J )  ->  (
( R `  z
)  /  z )  =  ( ( R `
 ( Z  /  J ) )  / 
( Z  /  J
) ) )
6867fveq2d 5778 . . . . . . . 8  |-  ( z  =  ( Z  /  J )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) ) )
6968breq1d 4377 . . . . . . 7  |-  ( z  =  ( Z  /  J )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) ) )  <_  U )
)
7069rspcv 3131 . . . . . 6  |-  ( ( Z  /  J )  e.  ( Y [,) +oo )  ->  ( A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  U  ->  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U ) )
7162, 64, 70sylc 60 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U )
7248, 71eqbrtrrd 4389 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J )  <_  U )
7330, 3, 23lemuldivd 11222 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
)  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7472, 73mpbid 210 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  <_  ( U  /  J ) )
755, 30subge0d 10059 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 0  <_  (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7674, 75mpbird 232 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( ( U  /  J )  -  ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) ) ) )
77 log1 23058 . . 3  |-  ( log `  1 )  =  0
78 nnge1 10478 . . . . 5  |-  ( J  e.  NN  ->  1  <_  J )
7978ad2antrl 725 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
1  <_  J )
80 1rp 11143 . . . . 5  |-  1  e.  RR+
81 logleb 23075 . . . . 5  |-  ( ( 1  e.  RR+  /\  J  e.  RR+ )  ->  (
1  <_  J  <->  ( log `  1 )  <_  ( log `  J ) ) )
8280, 23, 81sylancr 661 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 1  <_  J  <->  ( log `  1 )  <_  ( log `  J
) ) )
8379, 82mpbid 210 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  1
)  <_  ( log `  J ) )
8477, 83syl5eqbrr 4401 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( log `  J ) )
8531, 32, 76, 84mulge0d 10046 1  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   class class class wbr 4367    |-> cmpt 4425   ` cfv 5496  (class class class)co 6196   CCcc 9401   RRcr 9402   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408   +oocpnf 9536    < clt 9539    <_ cle 9540    - cmin 9718    / cdiv 10123   NNcn 10452   2c2 10502   3c3 10503   4c4 10504  ;cdc 10895   RR+crp 11139   (,)cioo 11450   [,)cico 11452   |_cfl 11826   ^cexp 12069   sqrcsqrt 13068   abscabs 13069   expce 13799   _eceu 13800   logclog 23027  ψcchp 23483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ioc 11455  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070  df-fac 12256  df-bc 12283  df-hash 12308  df-shft 12902  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-limsup 13296  df-clim 13313  df-rlim 13314  df-sum 13511  df-ef 13805  df-e 13806  df-sin 13807  df-cos 13808  df-pi 13810  df-dvds 13989  df-gcd 14147  df-prm 14220  df-pc 14363  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-lp 19723  df-perf 19724  df-cn 19814  df-cnp 19815  df-haus 19902  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cncf 21467  df-limc 22355  df-dv 22356  df-log 23029  df-vma 23488  df-chp 23489
This theorem is referenced by:  pntlemj  23905  pntlemf  23907
  Copyright terms: Public domain W3C validator