MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Unicode version

Theorem pntlemn 22734
Description: Lemma for pnt 22748. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
Assertion
Ref Expression
pntlemn  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Distinct variable groups:    z, C    z, J    z, L    z, K    z, M    z, N    z, R    z, U    z, W    z, X    z, Y    z, a, E    z, Z
Allowed substitution hints:    ph( z, a)    A( z, a)    B( z, a)    C( a)    D( z, a)    R( a)    U( a)    F( z, a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6  |-  ( ph  ->  U  e.  RR+ )
21adantr 462 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR+ )
32rpred 11015 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR )
4 simprl 748 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  NN )
53, 4nndivred 10358 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( U  /  J
)  e.  RR )
6 pntlem1.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
7 pntlem1.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
8 pntlem1.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR+ )
9 pntlem1.l . . . . . . . . . . 11  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
10 pntlem1.d . . . . . . . . . . 11  |-  D  =  ( A  +  1 )
11 pntlem1.f . . . . . . . . . . 11  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
12 pntlem1.u2 . . . . . . . . . . 11  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . 11  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . 11  |-  K  =  ( exp `  ( B  /  E ) )
15 pntlem1.y . . . . . . . . . . 11  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
16 pntlem1.x . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
17 pntlem1.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
18 pntlem1.w . . . . . . . . . . 11  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
19 pntlem1.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 22731 . . . . . . . . . 10  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2120simp1d 993 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR+ )
2221adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR+ )
234nnrpd 11014 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR+ )
2422, 23rpdivcld 11032 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR+ )
256pntrf 22697 . . . . . . . 8  |-  R : RR+
--> RR
2625ffvelrni 5830 . . . . . . 7  |-  ( ( Z  /  J )  e.  RR+  ->  ( R `
 ( Z  /  J ) )  e.  RR )
2724, 26syl 16 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  RR )
2827, 22rerpdivcld 11042 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  RR )
2928recnd 9400 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  CC )
3029abscld 12906 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  e.  RR )
315, 30resubcld 9764 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( U  /  J )  -  ( abs `  ( ( R `
 ( Z  /  J ) )  /  Z ) ) )  e.  RR )
3223relogcld 21957 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  J
)  e.  RR )
3327recnd 9400 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  CC )
3422rpcnne0d 11024 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  e.  CC  /\  Z  =/=  0 ) )
3523rpcnne0d 11024 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  CC  /\  J  =/=  0 ) )
36 divdiv2 10031 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  ( J  e.  CC  /\  J  =/=  0 ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
3733, 34, 35, 36syl3anc 1211 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
384nncnd 10326 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  CC )
39 div23 10001 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  J  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4033, 38, 34, 39syl3anc 1211 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4137, 40eqtrd 2465 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4241fveq2d 5683 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) ) )
4329, 38absmuld 12924 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) )  =  ( ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) ) )
4423rprege0d 11022 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  RR  /\  0  <_  J )
)
45 absid 12769 . . . . . . . 8  |-  ( ( J  e.  RR  /\  0  <_  J )  -> 
( abs `  J
)  =  J )
4644, 45syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  J
)  =  J )
4746oveq2d 6096 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) )  =  ( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J ) )
4842, 43, 473eqtrd 2469 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
) )
4924rpred 11015 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR )
50 simprr 749 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  <_  ( Z  /  Y ) )
5123rpred 11015 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR )
5222rpred 11015 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR )
5315simpld 456 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
5453adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR+ )
5551, 52, 54lemuldiv2d 11061 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  J  <_  ( Z  /  Y ) ) )
5650, 55mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Y  x.  J
)  <_  Z )
5754rpred 11015 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR )
5857, 52, 23lemuldivd 11060 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  Y  <_  ( Z  /  J ) ) )
5956, 58mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  <_  ( Z  /  J ) )
60 elicopnf 11373 . . . . . . . 8  |-  ( Y  e.  RR  ->  (
( Z  /  J
)  e.  ( Y [,) +oo )  <->  ( ( Z  /  J )  e.  RR  /\  Y  <_ 
( Z  /  J
) ) ) )
6157, 60syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Z  /  J )  e.  ( Y [,) +oo )  <->  ( ( Z  /  J
)  e.  RR  /\  Y  <_  ( Z  /  J ) ) ) )
6249, 59, 61mpbir2and 906 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  ( Y [,) +oo ) )
63 pntlem1.U . . . . . . 7  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6463adantr 462 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  U )
65 fveq2 5679 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  ( R `  z )  =  ( R `  ( Z  /  J
) ) )
66 id 22 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  z  =  ( Z  /  J ) )
6765, 66oveq12d 6098 . . . . . . . . 9  |-  ( z  =  ( Z  /  J )  ->  (
( R `  z
)  /  z )  =  ( ( R `
 ( Z  /  J ) )  / 
( Z  /  J
) ) )
6867fveq2d 5683 . . . . . . . 8  |-  ( z  =  ( Z  /  J )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) ) )
6968breq1d 4290 . . . . . . 7  |-  ( z  =  ( Z  /  J )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) ) )  <_  U )
)
7069rspcv 3058 . . . . . 6  |-  ( ( Z  /  J )  e.  ( Y [,) +oo )  ->  ( A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  U  ->  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U ) )
7162, 64, 70sylc 60 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U )
7248, 71eqbrtrrd 4302 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J )  <_  U )
7330, 3, 23lemuldivd 11060 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
)  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7472, 73mpbid 210 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  <_  ( U  /  J ) )
755, 30subge0d 9917 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 0  <_  (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7674, 75mpbird 232 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( ( U  /  J )  -  ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) ) ) )
77 log1 21919 . . 3  |-  ( log `  1 )  =  0
78 nnge1 10336 . . . . 5  |-  ( J  e.  NN  ->  1  <_  J )
7978ad2antrl 720 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
1  <_  J )
80 1rp 10983 . . . . 5  |-  1  e.  RR+
81 logleb 21937 . . . . 5  |-  ( ( 1  e.  RR+  /\  J  e.  RR+ )  ->  (
1  <_  J  <->  ( log `  1 )  <_  ( log `  J ) ) )
8280, 23, 81sylancr 656 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 1  <_  J  <->  ( log `  1 )  <_  ( log `  J
) ) )
8379, 82mpbid 210 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  1
)  <_  ( log `  J ) )
8477, 83syl5eqbrr 4314 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( log `  J ) )
8531, 32, 76, 84mulge0d 9904 1  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   class class class wbr 4280    e. cmpt 4338   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   +oocpnf 9403    < clt 9406    <_ cle 9407    - cmin 9583    / cdiv 9981   NNcn 10310   2c2 10359   3c3 10360   4c4 10361  ;cdc 10743   RR+crp 10979   (,)cioo 11288   [,)cico 11290   |_cfl 11624   ^cexp 11849   sqrcsqr 12706   abscabs 12707   expce 13330   _eceu 13331   logclog 21891  ψcchp 22315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-e 13337  df-sin 13338  df-cos 13339  df-pi 13341  df-dvds 13519  df-gcd 13674  df-prm 13747  df-pc 13887  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184  df-log 21893  df-vma 22320  df-chp 22321
This theorem is referenced by:  pntlemj  22737  pntlemf  22739
  Copyright terms: Public domain W3C validator