MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Unicode version

Theorem pntleml 24391
Description: Lemma for pnt 24394. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlemp.b  |-  ( ph  ->  B  e.  RR+ )
pntlemp.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlemp.d  |-  D  =  ( A  +  1 )
pntlemp.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlemp.K  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
Assertion
Ref Expression
pntleml  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, y,
z, A    e, a,
k, u, x, y, z, D    y, F, z    R, e, k, u, x, y, z    e, L, k, u, x, y, z    ph, x, y    B, e, k, x, y, z    ph, z
Allowed substitution hints:    ph( u, e, k, a)    A( u, e, k, a)    B( u, a)    R( a)    F( x, u, e, k, a)    L( a)

Proof of Theorem pntleml
Dummy variables  s 
r  t  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem3.a . 2  |-  ( ph  ->  A  e.  RR+ )
3 pntlem3.A . 2  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
4 eqid 2428 . 2  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
5 pntlemp.b . . . 4  |-  ( ph  ->  B  e.  RR+ )
6 pntlemp.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
7 pntlemp.d . . . 4  |-  D  =  ( A  +  1 )
8 pntlemp.f . . . 4  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
91, 2, 5, 6, 7, 8pntlemd 24374 . . 3  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
109simp3d 1019 . 2  |-  ( ph  ->  F  e.  RR+ )
11 0m0e0 10670 . . . . 5  |-  ( 0  -  0 )  =  0
12 simpr 462 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  =  0 )
1312oveq1d 6264 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  ( 0 ^ 3 ) )
14 3nn 10719 . . . . . . . . . 10  |-  3  e.  NN
15 0exp 12257 . . . . . . . . . 10  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
1614, 15ax-mp 5 . . . . . . . . 9  |-  ( 0 ^ 3 )  =  0
1713, 16syl6eq 2478 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  0 )
1817oveq2d 6265 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  ( F  x.  0 ) )
1910rpcnd 11294 . . . . . . . . 9  |-  ( ph  ->  F  e.  CC )
2019mul01d 9783 . . . . . . . 8  |-  ( ph  ->  ( F  x.  0 )  =  0 )
2120ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  0 )  =  0 )
2218, 21eqtrd 2462 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  0 )
2312, 22oveq12d 6267 . . . . 5  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  ( 0  -  0 ) )
2411, 23, 123eqtr4a 2488 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  r )
25 simplr 760 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
2624, 25eqeltrd 2506 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
27 oveq1 6256 . . . . . . . . . . 11  |-  ( y  =  s  ->  (
y [,) +oo )  =  ( s [,) +oo ) )
2827raleqdv 2970 . . . . . . . . . 10  |-  ( y  =  s  ->  ( A. z  e.  (
y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  <->  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
2928cbvrexv 2997 . . . . . . . . 9  |-  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  <->  E. s  e.  RR+  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
30 simplrr 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  ( 0 [,] A
) )
31 0re 9594 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
322ad2antrr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR+ )
3332rpred 11292 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR )
34 elicc2 11650 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( r  e.  ( 0 [,] A )  <-> 
( r  e.  RR  /\  0  <_  r  /\  r  <_  A ) ) )
3531, 33, 34sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  ( 0 [,] A
)  <->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) ) )
3630, 35mpbid 213 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) )
3736simp1d 1017 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR )
3810ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  F  e.  RR+ )
3936simp2d 1018 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  r )
40 simplrl 768 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  =/=  0 )
4137, 39, 40ne0gt0d 9723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <  r )
4237, 41elrpd 11289 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR+ )
43 3z 10921 . . . . . . . . . . . . . . . 16  |-  3  e.  ZZ
44 rpexpcl 12241 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  RR+  /\  3  e.  ZZ )  ->  (
r ^ 3 )  e.  RR+ )
4542, 43, 44sylancl 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r ^ 3 )  e.  RR+ )
4638, 45rpmulcld 11308 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR+ )
4746rpred 11292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR )
4837, 47resubcld 9998 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  RR )
493ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
505ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  B  e.  RR+ )
516ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  L  e.  ( 0 (,) 1
) )
52 pntlemp.K . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
5352ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
5436simp3d 1019 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  <_  A )
55 eqid 2428 . . . . . . . . . . . . . 14  |-  ( r  /  D )  =  ( r  /  D
)
56 eqid 2428 . . . . . . . . . . . . . 14  |-  ( exp `  ( B  /  (
r  /  D ) ) )  =  ( exp `  ( B  /  ( r  /  D ) ) )
57 simprl 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR+ )
58 1rp 11257 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
59 rpaddcl 11274 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  RR+  /\  1  e.  RR+ )  ->  (
s  +  1 )  e.  RR+ )
6057, 58, 59sylancl 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( s  +  1 )  e.  RR+ )
6157rpge0d 11296 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  s )
62 1re 9593 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
6357rpred 11292 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR )
64 addge02 10076 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6562, 63, 64sylancr 667 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6661, 65mpbid 213 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  1  <_  ( s  +  1 ) )
6760, 66jca 534 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 )  e.  RR+  /\  1  <_  ( s  +  1 ) ) )
6857rpxrd 11293 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR* )
6963lep1d 10489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  <_  ( s  +  1 ) )
70 df-ico 11592 . . . . . . . . . . . . . . . . 17  |-  [,)  =  ( t  e.  RR* ,  r  e.  RR*  |->  { w  e.  RR*  |  ( t  <_  w  /\  w  <  r ) } )
71 xrletr 11406 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  RR*  /\  (
s  +  1 )  e.  RR*  /\  v  e.  RR* )  ->  (
( s  <_  (
s  +  1 )  /\  ( s  +  1 )  <_  v
)  ->  s  <_  v ) )
7270, 70, 71ixxss1 11604 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  RR*  /\  s  <_  ( s  +  1 ) )  ->  (
( s  +  1 ) [,) +oo )  C_  ( s [,) +oo ) )
7368, 69, 72syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 ) [,) +oo )  C_  ( s [,) +oo ) )
74 simprr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
75 ssralv 3468 . . . . . . . . . . . . . . 15  |-  ( ( ( s  +  1 ) [,) +oo )  C_  ( s [,) +oo )  ->  ( A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  A. z  e.  ( ( s  +  1 ) [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  r ) )
7673, 74, 75sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( ( s  +  1 ) [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 24390 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
78 rpre 11259 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  RR+  ->  w  e.  RR )
7978adantl 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  RR )
8079leidd 10131 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  <_  w )
81 elicopnf 11681 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  RR  ->  (
w  e.  ( w [,) +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8279, 81syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
w  e.  ( w [,) +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8379, 80, 82mpbir2and 930 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  ( w [,) +oo ) )
84 fveq2 5825 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  ( R `  v )  =  ( R `  w ) )
85 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  v  =  w )
8684, 85oveq12d 6267 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  (
( R `  v
)  /  v )  =  ( ( R `
 w )  /  w ) )
8786fveq2d 5829 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  w
)  /  w ) ) )
8887breq1d 4376 . . . . . . . . . . . . . . . . 17  |-  ( v  =  w  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
8988rspcv 3121 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( w [,) +oo )  ->  ( A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) )  ->  ( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
9083, 89syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
911pntrf 24343 . . . . . . . . . . . . . . . . . . . . 21  |-  R : RR+
--> RR
9291ffvelrni 5980 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  RR+  ->  ( R `
 w )  e.  RR )
93 rerpdivcl 11281 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R `  w
)  e.  RR  /\  w  e.  RR+ )  -> 
( ( R `  w )  /  w
)  e.  RR )
9492, 93mpancom 673 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR+  ->  ( ( R `  w )  /  w )  e.  RR )
9594adantl 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  RR )
9695recnd 9620 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  CC )
9796absge0d 13449 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  <_  ( abs `  (
( R `  w
)  /  w ) ) )
98 0red 9595 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  e.  RR )
9996abscld 13441 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( abs `  ( ( R `
 w )  /  w ) )  e.  RR )
10048adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )
101 letr 9678 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( abs `  ( ( R `  w )  /  w ) )  e.  RR  /\  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )  -> 
( ( 0  <_ 
( abs `  (
( R `  w
)  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) )  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) ) )
10298, 99, 100, 101syl3anc 1264 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( 0  <_  ( abs `  ( ( R `
 w )  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10397, 102mpand 679 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10490, 103syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
105104rexlimdva 2856 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10677, 105mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) )
10746rpge0d 11296 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( F  x.  ( r ^ 3 ) ) )
10837, 47subge02d 10156 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  ( F  x.  ( r ^ 3 ) )  <->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r ) )
109107, 108mpbid 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r )
11048, 37, 33, 109, 54letrd 9743 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
111 elicc2 11650 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  <-> 
( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
) )
11231, 33, 111sylancr 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  <->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A ) ) )
11348, 106, 110, 112mpbir3and 1188 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A
) )
114113, 77jca 534 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
115114rexlimdvaa 2857 . . . . . . . . 9  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. s  e.  RR+  A. z  e.  ( s [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
11629, 115syl5bi 220 . . . . . . . 8  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
117116anassrs 652 . . . . . . 7  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
118117expimpd 606 . . . . . 6  |-  ( (
ph  /\  r  =/=  0 )  ->  (
( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
119 breq2 4370 . . . . . . . 8  |-  ( t  =  r  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )
120119rexralbidv 2886 . . . . . . 7  |-  ( t  =  r  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
121120elrab 3171 . . . . . 6  |-  ( r  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
122 breq2 4370 . . . . . . . . 9  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
123122rexralbidv 2886 . . . . . . . 8  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
124 fveq2 5825 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  ( R `  v )  =  ( R `  z ) )
125 id 22 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  v  =  z )
126124, 125oveq12d 6267 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
( R `  v
)  /  v )  =  ( ( R `
 z )  / 
z ) )
127126fveq2d 5829 . . . . . . . . . . . 12  |-  ( v  =  z  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
128127breq1d 4376 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
129128cbvralv 2996 . . . . . . . . . 10  |-  ( A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) )  <->  A. z  e.  (
w [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
130 oveq1 6256 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
w [,) +oo )  =  ( y [,) +oo ) )
131130raleqdv 2970 . . . . . . . . . 10  |-  ( w  =  y  ->  ( A. z  e.  (
w [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
132129, 131syl5bb 260 . . . . . . . . 9  |-  ( w  =  y  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
133132cbvrexv 2997 . . . . . . . 8  |-  ( E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
134123, 133syl6bbr 266 . . . . . . 7  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
135134elrab 3171 . . . . . 6  |-  ( ( r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
136118, 121, 1353imtr4g 273 . . . . 5  |-  ( (
ph  /\  r  =/=  0 )  ->  (
r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
) )
137136imp 430 . . . 4  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e. 
{ t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
138137an32s 811 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  =/=  0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
13926, 138pm2.61dane 2688 . 2  |-  ( (
ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t } )  ->  ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t } )
1401, 2, 3, 4, 10, 139pntlem3 24389 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   {crab 2718    C_ wss 3379   class class class wbr 4366    |-> cmpt 4425   ` cfv 5544  (class class class)co 6249   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495   +oocpnf 9623   RR*cxr 9625    < clt 9626    <_ cle 9627    - cmin 9811    / cdiv 10220   NNcn 10560   2c2 10610   3c3 10611   ZZcz 10888  ;cdc 11002   RR+crp 11253   (,)cioo 11586   [,)cico 11588   [,]cicc 11589   ^cexp 12222   abscabs 13241    ~~> r crli 13492   expce 14057  ψcchp 23961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-disj 4338  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-er 7318  df-map 7429  df-pm 7430  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-10 10627  df-n0 10821  df-z 10889  df-dec 11003  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-ioo 11590  df-ioc 11591  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-fl 11978  df-mod 12047  df-seq 12164  df-exp 12223  df-fac 12410  df-bc 12438  df-hash 12466  df-shft 13074  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-limsup 13469  df-clim 13495  df-rlim 13496  df-o1 13497  df-lo1 13498  df-sum 13696  df-ef 14064  df-e 14065  df-sin 14066  df-cos 14067  df-pi 14069  df-dvds 14249  df-gcd 14412  df-prm 14566  df-pc 14730  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-mulr 15147  df-starv 15148  df-sca 15149  df-vsca 15150  df-ip 15151  df-tset 15152  df-ple 15153  df-ds 15155  df-unif 15156  df-hom 15157  df-cco 15158  df-rest 15264  df-topn 15265  df-0g 15283  df-gsum 15284  df-topgen 15285  df-pt 15286  df-prds 15289  df-xrs 15343  df-qtop 15349  df-imas 15350  df-xps 15353  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-mulg 16619  df-cntz 16914  df-cmn 17375  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-fbas 18910  df-fg 18911  df-cnfld 18914  df-top 19863  df-bases 19864  df-topon 19865  df-topsp 19866  df-cld 19976  df-ntr 19977  df-cls 19978  df-nei 20056  df-lp 20094  df-perf 20095  df-cn 20185  df-cnp 20186  df-haus 20273  df-cmp 20344  df-tx 20519  df-hmeo 20712  df-fil 20803  df-fm 20895  df-flim 20896  df-flf 20897  df-xms 21277  df-ms 21278  df-tms 21279  df-cncf 21852  df-limc 22763  df-dv 22764  df-log 23448  df-cxp 23449  df-em 23860  df-cht 23965  df-vma 23966  df-chp 23967  df-ppi 23968  df-mu 23969
This theorem is referenced by:  pnt3  24392
  Copyright terms: Public domain W3C validator