MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Visualization version   Unicode version

Theorem pntleml 24498
Description: Lemma for pnt 24501. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlemp.b  |-  ( ph  ->  B  e.  RR+ )
pntlemp.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlemp.d  |-  D  =  ( A  +  1 )
pntlemp.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlemp.K  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
Assertion
Ref Expression
pntleml  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, y,
z, A    e, a,
k, u, x, y, z, D    y, F, z    R, e, k, u, x, y, z    e, L, k, u, x, y, z    ph, x, y    B, e, k, x, y, z    ph, z
Allowed substitution hints:    ph( u, e, k, a)    A( u, e, k, a)    B( u, a)    R( a)    F( x, u, e, k, a)    L( a)

Proof of Theorem pntleml
Dummy variables  s 
r  t  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem3.a . 2  |-  ( ph  ->  A  e.  RR+ )
3 pntlem3.A . 2  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
4 eqid 2462 . 2  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
5 pntlemp.b . . . 4  |-  ( ph  ->  B  e.  RR+ )
6 pntlemp.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
7 pntlemp.d . . . 4  |-  D  =  ( A  +  1 )
8 pntlemp.f . . . 4  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
91, 2, 5, 6, 7, 8pntlemd 24481 . . 3  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
109simp3d 1028 . 2  |-  ( ph  ->  F  e.  RR+ )
11 0m0e0 10747 . . . . 5  |-  ( 0  -  0 )  =  0
12 simpr 467 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  =  0 )
1312oveq1d 6330 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  ( 0 ^ 3 ) )
14 3nn 10797 . . . . . . . . . 10  |-  3  e.  NN
15 0exp 12339 . . . . . . . . . 10  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
1614, 15ax-mp 5 . . . . . . . . 9  |-  ( 0 ^ 3 )  =  0
1713, 16syl6eq 2512 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  0 )
1817oveq2d 6331 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  ( F  x.  0 ) )
1910rpcnd 11372 . . . . . . . . 9  |-  ( ph  ->  F  e.  CC )
2019mul01d 9858 . . . . . . . 8  |-  ( ph  ->  ( F  x.  0 )  =  0 )
2120ad2antrr 737 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  0 )  =  0 )
2218, 21eqtrd 2496 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  0 )
2312, 22oveq12d 6333 . . . . 5  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  ( 0  -  0 ) )
2411, 23, 123eqtr4a 2522 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  r )
25 simplr 767 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
2624, 25eqeltrd 2540 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
27 oveq1 6322 . . . . . . . . . . 11  |-  ( y  =  s  ->  (
y [,) +oo )  =  ( s [,) +oo ) )
2827raleqdv 3005 . . . . . . . . . 10  |-  ( y  =  s  ->  ( A. z  e.  (
y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  <->  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
2928cbvrexv 3032 . . . . . . . . 9  |-  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  <->  E. s  e.  RR+  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
30 simplrr 776 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  ( 0 [,] A
) )
31 0re 9669 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
322ad2antrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR+ )
3332rpred 11370 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR )
34 elicc2 11728 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( r  e.  ( 0 [,] A )  <-> 
( r  e.  RR  /\  0  <_  r  /\  r  <_  A ) ) )
3531, 33, 34sylancr 674 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  ( 0 [,] A
)  <->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) ) )
3630, 35mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) )
3736simp1d 1026 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR )
3810ad2antrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  F  e.  RR+ )
3936simp2d 1027 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  r )
40 simplrl 775 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  =/=  0 )
4137, 39, 40ne0gt0d 9798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <  r )
4237, 41elrpd 11367 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR+ )
43 3z 10999 . . . . . . . . . . . . . . . 16  |-  3  e.  ZZ
44 rpexpcl 12323 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  RR+  /\  3  e.  ZZ )  ->  (
r ^ 3 )  e.  RR+ )
4542, 43, 44sylancl 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r ^ 3 )  e.  RR+ )
4638, 45rpmulcld 11386 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR+ )
4746rpred 11370 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR )
4837, 47resubcld 10075 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  RR )
493ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
505ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  B  e.  RR+ )
516ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  L  e.  ( 0 (,) 1
) )
52 pntlemp.K . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
5352ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
5436simp3d 1028 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  <_  A )
55 eqid 2462 . . . . . . . . . . . . . 14  |-  ( r  /  D )  =  ( r  /  D
)
56 eqid 2462 . . . . . . . . . . . . . 14  |-  ( exp `  ( B  /  (
r  /  D ) ) )  =  ( exp `  ( B  /  ( r  /  D ) ) )
57 simprl 769 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR+ )
58 1rp 11335 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
59 rpaddcl 11352 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  RR+  /\  1  e.  RR+ )  ->  (
s  +  1 )  e.  RR+ )
6057, 58, 59sylancl 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( s  +  1 )  e.  RR+ )
6157rpge0d 11374 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  s )
62 1re 9668 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
6357rpred 11370 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR )
64 addge02 10153 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6562, 63, 64sylancr 674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6661, 65mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  1  <_  ( s  +  1 ) )
6760, 66jca 539 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 )  e.  RR+  /\  1  <_  ( s  +  1 ) ) )
6857rpxrd 11371 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR* )
6963lep1d 10566 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  <_  ( s  +  1 ) )
70 df-ico 11670 . . . . . . . . . . . . . . . . 17  |-  [,)  =  ( t  e.  RR* ,  r  e.  RR*  |->  { w  e.  RR*  |  ( t  <_  w  /\  w  <  r ) } )
71 xrletr 11484 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  RR*  /\  (
s  +  1 )  e.  RR*  /\  v  e.  RR* )  ->  (
( s  <_  (
s  +  1 )  /\  ( s  +  1 )  <_  v
)  ->  s  <_  v ) )
7270, 70, 71ixxss1 11682 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  RR*  /\  s  <_  ( s  +  1 ) )  ->  (
( s  +  1 ) [,) +oo )  C_  ( s [,) +oo ) )
7368, 69, 72syl2anc 671 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 ) [,) +oo )  C_  ( s [,) +oo ) )
74 simprr 771 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
75 ssralv 3505 . . . . . . . . . . . . . . 15  |-  ( ( ( s  +  1 ) [,) +oo )  C_  ( s [,) +oo )  ->  ( A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  A. z  e.  ( ( s  +  1 ) [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  r ) )
7673, 74, 75sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( ( s  +  1 ) [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 24497 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
78 rpre 11337 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  RR+  ->  w  e.  RR )
7978adantl 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  RR )
8079leidd 10208 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  <_  w )
81 elicopnf 11759 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  RR  ->  (
w  e.  ( w [,) +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8279, 81syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
w  e.  ( w [,) +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8379, 80, 82mpbir2and 938 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  ( w [,) +oo ) )
84 fveq2 5888 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  ( R `  v )  =  ( R `  w ) )
85 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  v  =  w )
8684, 85oveq12d 6333 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  (
( R `  v
)  /  v )  =  ( ( R `
 w )  /  w ) )
8786fveq2d 5892 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  w
)  /  w ) ) )
8887breq1d 4426 . . . . . . . . . . . . . . . . 17  |-  ( v  =  w  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
8988rspcv 3158 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( w [,) +oo )  ->  ( A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) )  ->  ( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
9083, 89syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
911pntrf 24450 . . . . . . . . . . . . . . . . . . . . 21  |-  R : RR+
--> RR
9291ffvelrni 6044 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  RR+  ->  ( R `
 w )  e.  RR )
93 rerpdivcl 11359 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R `  w
)  e.  RR  /\  w  e.  RR+ )  -> 
( ( R `  w )  /  w
)  e.  RR )
9492, 93mpancom 680 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR+  ->  ( ( R `  w )  /  w )  e.  RR )
9594adantl 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  RR )
9695recnd 9695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  CC )
9796absge0d 13555 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  <_  ( abs `  (
( R `  w
)  /  w ) ) )
98 0red 9670 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  e.  RR )
9996abscld 13547 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( abs `  ( ( R `
 w )  /  w ) )  e.  RR )
10048adantr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )
101 letr 9753 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( abs `  ( ( R `  w )  /  w ) )  e.  RR  /\  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )  -> 
( ( 0  <_ 
( abs `  (
( R `  w
)  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) )  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) ) )
10298, 99, 100, 101syl3anc 1276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( 0  <_  ( abs `  ( ( R `
 w )  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10397, 102mpand 686 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10490, 103syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
105104rexlimdva 2891 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10677, 105mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) )
10746rpge0d 11374 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( F  x.  ( r ^ 3 ) ) )
10837, 47subge02d 10233 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  ( F  x.  ( r ^ 3 ) )  <->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r ) )
109107, 108mpbid 215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r )
11048, 37, 33, 109, 54letrd 9818 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
111 elicc2 11728 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  <-> 
( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
) )
11231, 33, 111sylancr 674 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  <->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A ) ) )
11348, 106, 110, 112mpbir3and 1197 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A
) )
114113, 77jca 539 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
115114rexlimdvaa 2892 . . . . . . . . 9  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. s  e.  RR+  A. z  e.  ( s [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
11629, 115syl5bi 225 . . . . . . . 8  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
117116anassrs 658 . . . . . . 7  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
118117expimpd 612 . . . . . 6  |-  ( (
ph  /\  r  =/=  0 )  ->  (
( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
119 breq2 4420 . . . . . . . 8  |-  ( t  =  r  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )
120119rexralbidv 2921 . . . . . . 7  |-  ( t  =  r  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
121120elrab 3208 . . . . . 6  |-  ( r  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
122 breq2 4420 . . . . . . . . 9  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
123122rexralbidv 2921 . . . . . . . 8  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
124 fveq2 5888 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  ( R `  v )  =  ( R `  z ) )
125 id 22 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  v  =  z )
126124, 125oveq12d 6333 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
( R `  v
)  /  v )  =  ( ( R `
 z )  / 
z ) )
127126fveq2d 5892 . . . . . . . . . . . 12  |-  ( v  =  z  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
128127breq1d 4426 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
129128cbvralv 3031 . . . . . . . . . 10  |-  ( A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) )  <->  A. z  e.  (
w [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
130 oveq1 6322 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
w [,) +oo )  =  ( y [,) +oo ) )
131130raleqdv 3005 . . . . . . . . . 10  |-  ( w  =  y  ->  ( A. z  e.  (
w [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
132129, 131syl5bb 265 . . . . . . . . 9  |-  ( w  =  y  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
133132cbvrexv 3032 . . . . . . . 8  |-  ( E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
134123, 133syl6bbr 271 . . . . . . 7  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
135134elrab 3208 . . . . . 6  |-  ( ( r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
136118, 121, 1353imtr4g 278 . . . . 5  |-  ( (
ph  /\  r  =/=  0 )  ->  (
r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
) )
137136imp 435 . . . 4  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e. 
{ t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
138137an32s 818 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  =/=  0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
13926, 138pm2.61dane 2723 . 2  |-  ( (
ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t } )  ->  ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t } )
1401, 2, 3, 4, 10, 139pntlem3 24496 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750   {crab 2753    C_ wss 3416   class class class wbr 4416    |-> cmpt 4475   ` cfv 5601  (class class class)co 6315   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    x. cmul 9570   +oocpnf 9698   RR*cxr 9700    < clt 9701    <_ cle 9702    - cmin 9886    / cdiv 10297   NNcn 10637   2c2 10687   3c3 10688   ZZcz 10966  ;cdc 11080   RR+crp 11331   (,)cioo 11664   [,)cico 11666   [,]cicc 11667   ^cexp 12304   abscabs 13346    ~~> r crli 13598   expce 14163  ψcchp 24068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643  ax-addf 9644  ax-mulf 9645
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-disj 4388  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-map 7500  df-pm 7501  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-fi 7951  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-cda 8624  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-q 11294  df-rp 11332  df-xneg 11438  df-xadd 11439  df-xmul 11440  df-ioo 11668  df-ioc 11669  df-ico 11670  df-icc 11671  df-fz 11814  df-fzo 11947  df-fl 12060  df-mod 12129  df-seq 12246  df-exp 12305  df-fac 12492  df-bc 12520  df-hash 12548  df-shft 13179  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-limsup 13575  df-clim 13601  df-rlim 13602  df-o1 13603  df-lo1 13604  df-sum 13802  df-ef 14170  df-e 14171  df-sin 14172  df-cos 14173  df-pi 14175  df-dvds 14355  df-gcd 14518  df-prm 14672  df-pc 14836  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-starv 15254  df-sca 15255  df-vsca 15256  df-ip 15257  df-tset 15258  df-ple 15259  df-ds 15261  df-unif 15262  df-hom 15263  df-cco 15264  df-rest 15370  df-topn 15371  df-0g 15389  df-gsum 15390  df-topgen 15391  df-pt 15392  df-prds 15395  df-xrs 15449  df-qtop 15455  df-imas 15456  df-xps 15459  df-mre 15541  df-mrc 15542  df-acs 15544  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-submnd 16632  df-mulg 16725  df-cntz 17020  df-cmn 17481  df-psmet 19011  df-xmet 19012  df-met 19013  df-bl 19014  df-mopn 19015  df-fbas 19016  df-fg 19017  df-cnfld 19020  df-top 19970  df-bases 19971  df-topon 19972  df-topsp 19973  df-cld 20083  df-ntr 20084  df-cls 20085  df-nei 20163  df-lp 20201  df-perf 20202  df-cn 20292  df-cnp 20293  df-haus 20380  df-cmp 20451  df-tx 20626  df-hmeo 20819  df-fil 20910  df-fm 21002  df-flim 21003  df-flf 21004  df-xms 21384  df-ms 21385  df-tms 21386  df-cncf 21959  df-limc 22870  df-dv 22871  df-log 23555  df-cxp 23556  df-em 23967  df-cht 24072  df-vma 24073  df-chp 24074  df-ppi 24075  df-mu 24076
This theorem is referenced by:  pnt3  24499
  Copyright terms: Public domain W3C validator