MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Unicode version

Theorem pntlemj 23766
Description: Lemma for pnt 23777. The induction step. Using pntibnd 23756, we find an interval in  K ^ J ... K ^ ( J  + 
1 ) which is sufficiently large and has a much smaller value,  R ( z )  / 
z  <_  E (instead of our original bound 
R ( z )  /  z  <_  U). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntlem1.K  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntlem1.o  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
pntlem1.v  |-  ( ph  ->  V  e.  RR+ )
pntlem1.V  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
pntlem1.j  |-  ( ph  ->  J  e.  ( M..^ N ) )
pntlem1.i  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
Assertion
Ref Expression
pntlemj  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Distinct variable groups:    z, C    n, I    y, n, z, J    u, n, L, y, z    n, K, y, z    n, M, z    n, O, z    ph, n    n, N, z    R, n, u, y, z   
n, V, u    U, n, z    n, W, z   
n, X, y, z   
n, Y, z    n, a, u, y, z, E   
n, Z, u, z
Allowed substitution hints:    ph( y, z, u, a)    A( y, z, u, n, a)    B( y, z, u, n, a)    C( y, u, n, a)    D( y, z, u, n, a)    R( a)    U( y, u, a)    F( y, z, u, n, a)    I( y, z, u, a)    J( u, a)    K( u, a)    L( a)    M( y, u, a)    N( y, u, a)    O( y, u, a)    V( y, z, a)    W( y, u, a)    X( u, a)    Y( y, u, a)    Z( y, a)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . . . . . 7  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . . . . . 7  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . . . . . 7  |-  D  =  ( A  +  1 )
6 pntlem1.f . . . . . . 7  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . . . . . 7  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . . . . . 7  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . . . . . 7  |-  E  =  ( U  /  D
)
10 pntlem1.k . . . . . . 7  |-  K  =  ( exp `  ( B  /  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 23758 . . . . . 6  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1211simp3d 1011 . . . . 5  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1312simp3d 1011 . . . 4  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
141, 2, 3, 4, 5, 6pntlemd 23757 . . . . . . . 8  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
1514simp1d 1009 . . . . . . 7  |-  ( ph  ->  L  e.  RR+ )
1611simp1d 1009 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1715, 16rpmulcld 11283 . . . . . 6  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
18 8nn 10706 . . . . . . 7  |-  8  e.  NN
19 nnrp 11240 . . . . . . 7  |-  ( 8  e.  NN  ->  8  e.  RR+ )
2018, 19ax-mp 5 . . . . . 6  |-  8  e.  RR+
21 rpdivcl 11253 . . . . . 6  |-  ( ( ( L  x.  E
)  e.  RR+  /\  8  e.  RR+ )  ->  (
( L  x.  E
)  /  8 )  e.  RR+ )
2217, 20, 21sylancl 662 . . . . 5  |-  ( ph  ->  ( ( L  x.  E )  /  8
)  e.  RR+ )
23 pntlem1.y . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
24 pntlem1.x . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
25 pntlem1.c . . . . . . . . 9  |-  ( ph  ->  C  e.  RR+ )
26 pntlem1.w . . . . . . . . 9  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
27 pntlem1.z . . . . . . . . 9  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 23760 . . . . . . . 8  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2928simp1d 1009 . . . . . . 7  |-  ( ph  ->  Z  e.  RR+ )
3029rpred 11267 . . . . . 6  |-  ( ph  ->  Z  e.  RR )
3128simp2d 1010 . . . . . . 7  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
3231simp1d 1009 . . . . . 6  |-  ( ph  ->  1  <  Z )
3330, 32rplogcld 22992 . . . . 5  |-  ( ph  ->  ( log `  Z
)  e.  RR+ )
3422, 33rpmulcld 11283 . . . 4  |-  ( ph  ->  ( ( ( L  x.  E )  / 
8 )  x.  ( log `  Z ) )  e.  RR+ )
3513, 34rpmulcld 11283 . . 3  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  e.  RR+ )
3635rpred 11267 . 2  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  e.  RR )
37 pntlem1.i . . . . . 6  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
38 fzfid 12065 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  e.  Fin )
3937, 38syl5eqel 2535 . . . . 5  |-  ( ph  ->  I  e.  Fin )
40 hashcl 12410 . . . . 5  |-  ( I  e.  Fin  ->  ( # `
 I )  e. 
NN0 )
4139, 40syl 16 . . . 4  |-  ( ph  ->  ( # `  I
)  e.  NN0 )
4241nn0red 10860 . . 3  |-  ( ph  ->  ( # `  I
)  e.  RR )
4313rpred 11267 . . . 4  |-  ( ph  ->  ( U  -  E
)  e.  RR )
44 pntlem1.v . . . . . . 7  |-  ( ph  ->  V  e.  RR+ )
4529, 44rpdivcld 11284 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  e.  RR+ )
4645relogcld 22986 . . . . 5  |-  ( ph  ->  ( log `  ( Z  /  V ) )  e.  RR )
4746, 45rerpdivcld 11294 . . . 4  |-  ( ph  ->  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR )
4843, 47remulcld 9627 . . 3  |-  ( ph  ->  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
4942, 48remulcld 9627 . 2  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  e.  RR )
50 pntlem1.o . . . 4  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
51 fzfid 12065 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )  e.  Fin )
5250, 51syl5eqel 2535 . . 3  |-  ( ph  ->  O  e.  Fin )
537rpred 11267 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
5453adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  U  e.  RR )
5511simp2d 1010 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  RR+ )
56 pntlem1.j . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  ( M..^ N ) )
57 elfzoelz 11811 . . . . . . . . . . . . 13  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ZZ )
5856, 57syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  ZZ )
5958peano2zd 10979 . . . . . . . . . . 11  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
6055, 59rpexpcld 12315 . . . . . . . . . 10  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR+ )
6129, 60rpdivcld 11284 . . . . . . . . 9  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR+ )
6261rprege0d 11274 . . . . . . . 8  |-  ( ph  ->  ( ( Z  / 
( K ^ ( J  +  1 ) ) )  e.  RR  /\  0  <_  ( Z  /  ( K ^
( J  +  1 ) ) ) ) )
63 flge0nn0 11936 . . . . . . . 8  |-  ( ( ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR  /\  0  <_  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  ->  ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  e.  NN0 )
64 nn0p1nn 10842 . . . . . . . 8  |-  ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  e.  NN0  ->  ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 )  e.  NN )
6562, 63, 643syl 20 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  +  1 )  e.  NN )
66 elfzuz 11695 . . . . . . . 8  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
6766, 50eleq2s 2551 . . . . . . 7  |-  ( n  e.  O  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
68 eluznn 11163 . . . . . . 7  |-  ( ( ( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )  ->  n  e.  NN )
6965, 67, 68syl2an 477 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  NN )
7054, 69nndivred 10591 . . . . 5  |-  ( (
ph  /\  n  e.  O )  ->  ( U  /  n )  e.  RR )
7129adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  Z  e.  RR+ )
7269nnrpd 11266 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  RR+ )
7371, 72rpdivcld 11284 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  n )  e.  RR+ )
741pntrf 23726 . . . . . . . . . 10  |-  R : RR+
--> RR
7574ffvelrni 6015 . . . . . . . . 9  |-  ( ( Z  /  n )  e.  RR+  ->  ( R `
 ( Z  /  n ) )  e.  RR )
7673, 75syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  O )  ->  ( R `  ( Z  /  n ) )  e.  RR )
7776, 71rerpdivcld 11294 . . . . . . 7  |-  ( (
ph  /\  n  e.  O )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  RR )
7877recnd 9625 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  CC )
7978abscld 13249 . . . . 5  |-  ( (
ph  /\  n  e.  O )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  e.  RR )
8070, 79resubcld 9994 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  e.  RR )
8172relogcld 22986 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  ( log `  n )  e.  RR )
8280, 81remulcld 9627 . . 3  |-  ( (
ph  /\  n  e.  O )  ->  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  e.  RR )
8352, 82fsumrecl 13538 . 2  |-  ( ph  -> 
sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) )  e.  RR )
84 pntlem1.m . . 3  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
85 pntlem1.n . . 3  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
86 pntlem1.U . . 3  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
87 pntlem1.K . . 3  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
88 pntlem1.V . . 3  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 23765 . 2  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
9048recnd 9625 . . . . 5  |-  ( ph  ->  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )
91 fsumconst 13587 . . . . 5  |-  ( ( I  e.  Fin  /\  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )  ->  sum_ n  e.  I  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
9239, 90, 91syl2anc 661 . . . 4  |-  ( ph  -> 
sum_ n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 23764 . . . . 5  |-  ( ph  ->  I  C_  O )
9490ralrimivw 2858 . . . . 5  |-  ( ph  ->  A. n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )
9552olcd 393 . . . . 5  |-  ( ph  ->  ( O  C_  ( ZZ>=
`  1 )  \/  O  e.  Fin )
)
96 sumss2 13530 . . . . 5  |-  ( ( ( I  C_  O  /\  A. n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )  /\  ( O  C_  ( ZZ>= ` 
1 )  \/  O  e.  Fin ) )  ->  sum_ n  e.  I  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9793, 94, 95, 96syl21anc 1228 . . . 4  |-  ( ph  -> 
sum_ n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9892, 97eqtr3d 2486 . . 3  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9948adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
10099adantlr 714 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
101 0red 9600 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  -.  n  e.  I )  ->  0  e.  RR )
102100, 101ifclda 3958 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  e.  RR )
103 breq1 4440 . . . . 5  |-  ( ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  if ( n  e.  I ,  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  -> 
( ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) )  <->  if (
n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) ) )
104 breq1 4440 . . . . 5  |-  ( 0  =  if ( n  e.  I ,  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  -> 
( 0  <_  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  <->  if (
n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) ) )
10513rpregt0d 11273 . . . . . . . . . 10  |-  ( ph  ->  ( ( U  -  E )  e.  RR  /\  0  <  ( U  -  E ) ) )
106105adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  e.  RR  /\  0  <  ( U  -  E ) ) )
107106simpld 459 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  RR )
108 1rp 11235 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR+
109 rpaddcl 11251 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
1  +  ( L  x.  E ) )  e.  RR+ )
110108, 17, 109sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  +  ( L  x.  E ) )  e.  RR+ )
111110, 44rpmulcld 11283 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR+ )
11229, 111rpdivcld 11284 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR+ )
113112rprege0d 11274 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) )  e.  RR  /\  0  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
114 flge0nn0 11936 . . . . . . . . . . . . 13  |-  ( ( ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  /\  0  <_  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  -> 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  NN0 )
115 nn0p1nn 10842 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  NN0  ->  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN )
116113, 114, 1153syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN )
117 elfzuz 11695 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ) )
118117, 37eleq2s 2551 . . . . . . . . . . . 12  |-  ( n  e.  I  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ) )
119 eluznn 11163 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ) )  ->  n  e.  NN )
120116, 118, 119syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  NN )
121120nnrpd 11266 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  RR+ )
122121relogcld 22986 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  n )  e.  RR )
123122, 120nndivred 10591 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  n
)  /  n )  e.  RR )
124107, 123remulcld 9627 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  n )  /  n ) )  e.  RR )
12593sselda 3489 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  O )
126125, 82syldan 470 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  e.  RR )
127 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  I )
128127, 37syl6eleq 2541 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
129 elfzle2 11701 . . . . . . . . . . 11  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  <_  ( |_ `  ( Z  /  V ) ) )
130128, 129syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  <_  ( |_ `  ( Z  /  V ) ) )
13145rpred 11267 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  /  V
)  e.  RR )
132131adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  V )  e.  RR )
133 elfzelz 11699 . . . . . . . . . . . 12  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  e.  ZZ )
134128, 133syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  ZZ )
135 flge 11924 . . . . . . . . . . 11  |-  ( ( ( Z  /  V
)  e.  RR  /\  n  e.  ZZ )  ->  ( n  <_  ( Z  /  V )  <->  n  <_  ( |_ `  ( Z  /  V ) ) ) )
136132, 134, 135syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
n  <_  ( Z  /  V )  <->  n  <_  ( |_ `  ( Z  /  V ) ) ) )
137130, 136mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  n  <_  ( Z  /  V
) )
138120nnred 10558 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  RR )
139 ere 13806 . . . . . . . . . . . 12  |-  _e  e.  RR
140139a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  _e  e.  RR )
141112rpred 11267 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
142141adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
143139a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  _e  e.  RR )
14429rpsqrtcld 13225 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( sqr `  Z
)  e.  RR+ )
145144rpred 11267 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sqr `  Z
)  e.  RR )
14631simp2d 1010 . . . . . . . . . . . . 13  |-  ( ph  ->  _e  <_  ( sqr `  Z ) )
147111rpred 11267 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )
14860rpred 11267 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR )
14988simpld 459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) ) )
150149simprd 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) )
15155rpcnd 11269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  CC )
15255, 58rpexpcld 12315 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K ^ J
)  e.  RR+ )
153152rpcnd 11269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( K ^ J
)  e.  CC )
154151, 153mulcomd 9620 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( ( K ^ J )  x.  K ) )
1551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 23761 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
156155simp1d 1009 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  M  e.  NN )
157 elfzouz 11815 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( ZZ>= `  M )
)
15856, 157syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  J  e.  ( ZZ>= `  M ) )
159 eluznn 11163 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
160156, 158, 159syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  e.  NN )
161160nnnn0d 10859 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  NN0 )
162151, 161expp1d 12293 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  =  ( ( K ^ J )  x.  K ) )
163154, 162eqtr4d 2487 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( K ^
( J  +  1 ) ) )
164150, 163breqtrd 4461 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K ^ ( J  + 
1 ) ) )
165147, 148, 164ltled 9736 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( K ^ ( J  + 
1 ) ) )
166 fzofzp1 11891 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  ( M..^ N
)  ->  ( J  +  1 )  e.  ( M ... N
) )
16756, 166syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  +  1 )  e.  ( M ... N ) )
1681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 23762 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( J  +  1 )  e.  ( M ... N
) )  ->  ( X  <  ( K ^
( J  +  1 ) )  /\  ( K ^ ( J  + 
1 ) )  <_ 
( sqr `  Z
) ) )
169167, 168mpdan 668 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X  <  ( K ^ ( J  + 
1 ) )  /\  ( K ^ ( J  +  1 ) )  <_  ( sqr `  Z
) ) )
170169simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  <_  ( sqr `  Z ) )
171147, 148, 145, 165, 170letrd 9742 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( sqr `  Z ) )
172147, 145, 144lemul2d 11307 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  <_  ( sqr `  Z )  <->  ( ( sqr `  Z )  x.  ( ( 1  +  ( L  x.  E
) )  x.  V
) )  <_  (
( sqr `  Z
)  x.  ( sqr `  Z ) ) ) )
173171, 172mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  ( ( sqr `  Z )  x.  ( sqr `  Z ) ) )
17429rprege0d 11274 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Z  e.  RR  /\  0  <_  Z )
)
175 remsqsqrt 13072 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
176174, 175syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
177173, 176breqtrd 4461 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  Z )
178145, 30, 111lemuldivd 11312 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( sqr `  Z )  x.  (
( 1  +  ( L  x.  E ) )  x.  V ) )  <_  Z  <->  ( sqr `  Z )  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
179177, 178mpbid 210 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sqr `  Z
)  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
180143, 145, 141, 146, 179letrd 9742 . . . . . . . . . . . 12  |-  ( ph  ->  _e  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
181180adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
182 reflcl 11915 . . . . . . . . . . . . . 14  |-  ( ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  ->  ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  e.  RR )
183 peano2re 9756 . . . . . . . . . . . . . 14  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  RR  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
184141, 182, 1833syl 20 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
185184adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
186 fllep1 11920 . . . . . . . . . . . . 13  |-  ( ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_ 
( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) )
187142, 186syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_ 
( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) )
188 elfzle1 11700 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 )  <_  n
)
189128, 188syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  <_  n )
190142, 185, 138, 187, 189letrd 9742 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  n )
191140, 142, 138, 181, 190letrd 9742 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  n )
192140, 138, 132, 191, 137letrd 9742 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  ( Z  /  V
) )
193 logdivle 22985 . . . . . . . . . 10  |-  ( ( ( n  e.  RR  /\  _e  <_  n )  /\  ( ( Z  /  V )  e.  RR  /\  _e  <_  ( Z  /  V ) ) )  ->  ( n  <_ 
( Z  /  V
)  <->  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) )  <_  ( ( log `  n )  /  n
) ) )
194138, 191, 132, 192, 193syl22anc 1230 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
n  <_  ( Z  /  V )  <->  ( ( log `  ( Z  /  V ) )  / 
( Z  /  V
) )  <_  (
( log `  n
)  /  n ) ) )
195137, 194mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  <_ 
( ( log `  n
)  /  n ) )
19647adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR )
197 lemul2 10402 . . . . . . . . 9  |-  ( ( ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR  /\  ( ( log `  n )  /  n )  e.  RR  /\  ( ( U  -  E )  e.  RR  /\  0  <  ( U  -  E
) ) )  -> 
( ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) )  <_  ( ( log `  n )  /  n
)  <->  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) ) )
198196, 123, 106, 197syl3anc 1229 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  <_ 
( ( log `  n
)  /  n )  <-> 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) ) )
199195, 198mpbid 210 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) )
20013rpcnd 11269 . . . . . . . . . . 11  |-  ( ph  ->  ( U  -  E
)  e.  CC )
201200adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  CC )
202122recnd 9625 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  n )  e.  CC )
203121rpcnne0d 11276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  CC  /\  n  =/=  0 ) )
204 div23 10233 . . . . . . . . . 10  |-  ( ( ( U  -  E
)  e.  CC  /\  ( log `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( log `  n
) )  /  n
)  =  ( ( ( U  -  E
)  /  n )  x.  ( log `  n
) ) )
205201, 202, 203, 204syl3anc 1229 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  x.  ( log `  n ) )  /  n )  =  ( ( ( U  -  E )  /  n )  x.  ( log `  n ) ) )
206 divass 10232 . . . . . . . . . 10  |-  ( ( ( U  -  E
)  e.  CC  /\  ( log `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( log `  n
) )  /  n
)  =  ( ( U  -  E )  x.  ( ( log `  n )  /  n
) ) )
207201, 202, 203, 206syl3anc 1229 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  x.  ( log `  n ) )  /  n )  =  ( ( U  -  E )  x.  (
( log `  n
)  /  n ) ) )
208205, 207eqtr3d 2486 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  /  n
)  x.  ( log `  n ) )  =  ( ( U  -  E )  x.  (
( log `  n
)  /  n ) ) )
20943adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  RR )
210209, 120nndivred 10591 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  e.  RR )
211125, 80syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  e.  RR )
212 log1 22948 . . . . . . . . . 10  |-  ( log `  1 )  =  0
213120nnge1d 10585 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  1  <_  n )
214 logleb 22966 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR+  /\  n  e.  RR+ )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
215108, 121, 214sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
216213, 215mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  1 )  <_ 
( log `  n
) )
217212, 216syl5eqbrr 4471 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  0  <_  ( log `  n
) )
2187rpcnd 11269 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CC )
219218adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  U  e.  CC )
22016rpred 11267 . . . . . . . . . . . . 13  |-  ( ph  ->  E  e.  RR )
221220adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  E  e.  RR )
222221recnd 9625 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  E  e.  CC )
223 divsubdir 10247 . . . . . . . . . . 11  |-  ( ( U  e.  CC  /\  E  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( U  -  E )  /  n )  =  ( ( U  /  n
)  -  ( E  /  n ) ) )
224219, 222, 203, 223syl3anc 1229 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  =  ( ( U  /  n )  -  ( E  /  n
) ) )
225125, 79syldan 470 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  e.  RR )
226221, 120nndivred 10591 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( E  /  n )  e.  RR )
227125, 70syldan 470 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( U  /  n )  e.  RR )
228125, 76syldan 470 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  ( R `  ( Z  /  n ) )  e.  RR )
229228recnd 9625 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  ( R `  ( Z  /  n ) )  e.  CC )
23029adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  Z  e.  RR+ )
231230rpcnne0d 11276 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  e.  CC  /\  Z  =/=  0 ) )
232 divdiv2 10263 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R `  ( Z  /  n ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) )  =  ( ( ( R `  ( Z  /  n
) )  x.  n
)  /  Z ) )
233229, 231, 203, 232syl3anc 1229 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) )  =  ( ( ( R `
 ( Z  /  n ) )  x.  n )  /  Z
) )
234121rpcnd 11269 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  CC )
235 div23 10233 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R `  ( Z  /  n ) )  e.  CC  /\  n  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  n ) )  x.  n )  /  Z
)  =  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )
236229, 234, 231, 235syl3anc 1229 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( R `  ( Z  /  n
) )  x.  n
)  /  Z )  =  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )
237233, 236eqtrd 2484 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) )  =  ( ( ( R `
 ( Z  /  n ) )  /  Z )  x.  n
) )
238237fveq2d 5860 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  =  ( abs `  (
( ( R `  ( Z  /  n
) )  /  Z
)  x.  n ) ) )
239125, 78syldan 470 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  CC )
240239, 234absmuld 13267 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  ( abs `  n
) ) )
241121rprege0d 11274 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  RR  /\  0  <_  n ) )
242 absid 13111 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
243241, 242syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  n )  =  n )
244243oveq2d 6297 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  (
( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  ( abs `  n
) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n ) )
245238, 240, 2443eqtrd 2488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n ) )
24630adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  Z  e.  RR )
247246, 120nndivred 10591 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  e.  RR )
24844rpregt0d 11273 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( V  e.  RR  /\  0  <  V ) )
249248adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  ( V  e.  RR  /\  0  <  V ) )
250 lemuldiv2 10432 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  RR  /\  Z  e.  RR  /\  ( V  e.  RR  /\  0  <  V ) )  -> 
( ( V  x.  n )  <_  Z  <->  n  <_  ( Z  /  V ) ) )
251138, 246, 249, 250syl3anc 1229 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
( V  x.  n
)  <_  Z  <->  n  <_  ( Z  /  V ) ) )
252137, 251mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  ( V  x.  n )  <_  Z )
253249simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  V  e.  RR )
254253, 246, 121lemuldivd 11312 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( V  x.  n
)  <_  Z  <->  V  <_  ( Z  /  n ) ) )
255252, 254mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  V  <_  ( Z  /  n
) )
256111rpregt0d 11273 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
257256adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
258121rpregt0d 11273 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  RR  /\  0  <  n ) )
259 lediv23 10444 . . . . . . . . . . . . . . . . 17  |-  ( ( Z  e.  RR  /\  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) )  <_  n  <->  ( Z  /  n )  <_  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
260246, 257, 258, 259syl3anc 1229 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  <_  n  <->  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
261190, 260mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  <_ 
( ( 1  +  ( L  x.  E
) )  x.  V
) )
26244rpred 11267 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  V  e.  RR )
263262adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  V  e.  RR )
264147adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( 1  +  ( L  x.  E ) )  x.  V )  e.  RR )
265 elicc2 11600 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  RR  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )  ->  ( ( Z  /  n )  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) )  <->  ( ( Z  /  n )  e.  RR  /\  V  <_ 
( Z  /  n
)  /\  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
266263, 264, 265syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( Z  /  n
)  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <->  ( ( Z  /  n )  e.  RR  /\  V  <_ 
( Z  /  n
)  /\  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
267247, 255, 261, 266mpbir3and 1180 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
26888simprd 463 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
269268adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
270 fveq2 5856 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( Z  /  n )  ->  ( R `  u )  =  ( R `  ( Z  /  n
) ) )
271 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( Z  /  n )  ->  u  =  ( Z  /  n ) )
272270, 271oveq12d 6299 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( Z  /  n )  ->  (
( R `  u
)  /  u )  =  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )
273272fveq2d 5860 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( Z  /  n )  ->  ( abs `  ( ( R `
 u )  /  u ) )  =  ( abs `  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) ) ) )
274273breq1d 4447 . . . . . . . . . . . . . . 15  |-  ( u  =  ( Z  /  n )  ->  (
( abs `  (
( R `  u
)  /  u ) )  <_  E  <->  ( abs `  ( ( R `  ( Z  /  n
) )  /  ( Z  /  n ) ) )  <_  E )
)
275274rspcv 3192 . . . . . . . . . . . . . 14  |-  ( ( Z  /  n )  e.  ( V [,] ( ( 1  +  ( L  x.  E
) )  x.  V
) )  ->  ( A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  <_  E ) )
276267, 269, 275sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  <_  E )
277245, 276eqbrtrrd 4459 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n )  <_  E )
278225, 221, 121lemuldivd 11312 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n )  <_  E 
<->  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  <_  ( E  /  n ) ) )
279277, 278mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  <_ 
( E  /  n
) )
280225, 226, 227, 279lesub2dd 10176 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  /  n
)  -  ( E  /  n ) )  <_  ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) ) )
281224, 280eqbrtrd 4457 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  <_  ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) ) )
282210, 211, 122, 217, 281lemul1ad 10492 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  /  n
)  x.  ( log `  n ) )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
283208, 282eqbrtrrd 4459 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  n )  /  n ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
28499, 124, 126, 199, 283letrd 9742 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
285284adantlr 714 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
28669nnred 10558 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  RR )
28729, 152rpdivcld 11284 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR+ )
288287rpred 11267 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR )
289288adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  ( K ^ J ) )  e.  RR )
29023simpld 459 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR+ )
29129, 290rpdivcld 11284 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  /  Y
)  e.  RR+ )
292291rpred 11267 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
293292adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  Y )  e.  RR )
294 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  O )
295294, 50syl6eleq 2541 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) ) )
296 elfzle2 11701 . . . . . . . . . . 11  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) )  ->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
297295, 296syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
29869nnzd 10975 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  ZZ )
299 flge 11924 . . . . . . . . . . 11  |-  ( ( ( Z  /  ( K ^ J ) )  e.  RR  /\  n  e.  ZZ )  ->  (
n  <_  ( Z  /  ( K ^ J ) )  <->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
300289, 298, 299syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  (
n  <_  ( Z  /  ( K ^ J ) )  <->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
301297, 300mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( Z  /  ( K ^ J ) ) )
302290rpred 11267 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR )
30324simpld 459 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  RR+ )
304303rpred 11267 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
305152rpred 11267 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ^ J
)  e.  RR )
30624simprd 463 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <  X )
307302, 304, 306ltled 9736 . . . . . . . . . . . 12  |-  ( ph  ->  Y  <_  X )
308 elfzofz 11825 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( M ... N ) )
30956, 308syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  ( M ... N ) )
3101, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 23762 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
311309, 310mpdan 668 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  <  ( K ^ J )  /\  ( K ^ J )  <_  ( sqr `  Z
) ) )
312311simpld 459 . . . . . . . . . . . . 13  |-  ( ph  ->  X  <  ( K ^ J ) )
313304, 305, 312ltled 9736 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  ( K ^ J ) )
314302, 304, 305, 307, 313letrd 9742 . . . . . . . . . . 11  |-  ( ph  ->  Y  <_  ( K ^ J ) )
315290, 152, 29lediv2d 11291 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  <_  ( K ^ J )  <->  ( Z  /  ( K ^ J ) )  <_ 
( Z  /  Y
) ) )
316314, 315mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  <_  ( Z  /  Y ) )
317316adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  ( K ^ J ) )  <_ 
( Z  /  Y
) )
318286, 289, 293, 301, 317letrd 9742 . . . . . . . 8  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( Z  /  Y
) )
31969, 318jca 532 . . . . . . 7  |-  ( (
ph  /\  n  e.  O )  ->  (
n  e.  NN  /\  n  <_  ( Z  /  Y ) ) )
3201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 23763 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  n  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
321319, 320syldan 470 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  0  <_  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
322321adantr 465 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  -.  n  e.  I )  ->  0  <_  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
323103, 104, 285, 322ifbothda 3961 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
32452, 102, 82, 323fsumle 13595 . . 3  |-  ( ph  -> 
sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) ) )
32598, 324eqbrtrd 4457 . 2  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  <_  sum_ n  e.  O  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
32636, 49, 83, 89, 325letrd 9742 1  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794    C_ wss 3461   ifcif 3926   class class class wbr 4437    |-> cmpt 4495   ` cfv 5578  (class class class)co 6281   Fincfn 7518   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500   +oocpnf 9628    < clt 9631    <_ cle 9632    - cmin 9810    / cdiv 10213   NNcn 10543   2c2 10592   3c3 10593   4c4 10594   8c8 10598   NN0cn0 10802   ZZcz 10871  ;cdc 10986   ZZ>=cuz 11092   RR+crp 11231   (,)cioo 11540   [,)cico 11542   [,]cicc 11543   ...cfz 11683  ..^cfzo 11806   |_cfl 11909   ^cexp 12148   #chash 12387   sqrcsqrt 13048   abscabs 13049   sum_csu 13490   expce 13779   _eceu 13780   logclog 22920  ψcchp 23344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ioc 11545  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-ef 13785  df-e 13786  df-sin 13787  df-cos 13788  df-pi 13790  df-dvds 13969  df-gcd 14127  df-prm 14200  df-pc 14343  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249  df-log 22922  df-vma 23349  df-chp 23350
This theorem is referenced by:  pntlemi  23767
  Copyright terms: Public domain W3C validator