MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Unicode version

Theorem pntlemj 24167
Description: Lemma for pnt 24178. The induction step. Using pntibnd 24157, we find an interval in  K ^ J ... K ^ ( J  + 
1 ) which is sufficiently large and has a much smaller value,  R ( z )  / 
z  <_  E (instead of our original bound 
R ( z )  /  z  <_  U). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntlem1.K  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntlem1.o  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
pntlem1.v  |-  ( ph  ->  V  e.  RR+ )
pntlem1.V  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
pntlem1.j  |-  ( ph  ->  J  e.  ( M..^ N ) )
pntlem1.i  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
Assertion
Ref Expression
pntlemj  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Distinct variable groups:    z, C    n, I    y, n, z, J    u, n, L, y, z    n, K, y, z    n, M, z    n, O, z    ph, n    n, N, z    R, n, u, y, z   
n, V, u    U, n, z    n, W, z   
n, X, y, z   
n, Y, z    n, a, u, y, z, E   
n, Z, u, z
Allowed substitution hints:    ph( y, z, u, a)    A( y, z, u, n, a)    B( y, z, u, n, a)    C( y, u, n, a)    D( y, z, u, n, a)    R( a)    U( y, u, a)    F( y, z, u, n, a)    I( y, z, u, a)    J( u, a)    K( u, a)    L( a)    M( y, u, a)    N( y, u, a)    O( y, u, a)    V( y, z, a)    W( y, u, a)    X( u, a)    Y( y, u, a)    Z( y, a)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . . . . . 7  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . . . . . 7  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . . . . . 7  |-  D  =  ( A  +  1 )
6 pntlem1.f . . . . . . 7  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . . . . . 7  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . . . . . 7  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . . . . . 7  |-  E  =  ( U  /  D
)
10 pntlem1.k . . . . . . 7  |-  K  =  ( exp `  ( B  /  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 24159 . . . . . 6  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1211simp3d 1011 . . . . 5  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1312simp3d 1011 . . . 4  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
141, 2, 3, 4, 5, 6pntlemd 24158 . . . . . . . 8  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
1514simp1d 1009 . . . . . . 7  |-  ( ph  ->  L  e.  RR+ )
1611simp1d 1009 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1715, 16rpmulcld 11319 . . . . . 6  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
18 8nn 10739 . . . . . . 7  |-  8  e.  NN
19 nnrp 11273 . . . . . . 7  |-  ( 8  e.  NN  ->  8  e.  RR+ )
2018, 19ax-mp 5 . . . . . 6  |-  8  e.  RR+
21 rpdivcl 11287 . . . . . 6  |-  ( ( ( L  x.  E
)  e.  RR+  /\  8  e.  RR+ )  ->  (
( L  x.  E
)  /  8 )  e.  RR+ )
2217, 20, 21sylancl 660 . . . . 5  |-  ( ph  ->  ( ( L  x.  E )  /  8
)  e.  RR+ )
23 pntlem1.y . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
24 pntlem1.x . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
25 pntlem1.c . . . . . . . . 9  |-  ( ph  ->  C  e.  RR+ )
26 pntlem1.w . . . . . . . . 9  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
27 pntlem1.z . . . . . . . . 9  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 24161 . . . . . . . 8  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2928simp1d 1009 . . . . . . 7  |-  ( ph  ->  Z  e.  RR+ )
3029rpred 11303 . . . . . 6  |-  ( ph  ->  Z  e.  RR )
3128simp2d 1010 . . . . . . 7  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
3231simp1d 1009 . . . . . 6  |-  ( ph  ->  1  <  Z )
3330, 32rplogcld 23306 . . . . 5  |-  ( ph  ->  ( log `  Z
)  e.  RR+ )
3422, 33rpmulcld 11319 . . . 4  |-  ( ph  ->  ( ( ( L  x.  E )  / 
8 )  x.  ( log `  Z ) )  e.  RR+ )
3513, 34rpmulcld 11319 . . 3  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  e.  RR+ )
3635rpred 11303 . 2  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  e.  RR )
37 pntlem1.i . . . . . 6  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
38 fzfid 12122 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  e.  Fin )
3937, 38syl5eqel 2494 . . . . 5  |-  ( ph  ->  I  e.  Fin )
40 hashcl 12473 . . . . 5  |-  ( I  e.  Fin  ->  ( # `
 I )  e. 
NN0 )
4139, 40syl 17 . . . 4  |-  ( ph  ->  ( # `  I
)  e.  NN0 )
4241nn0red 10893 . . 3  |-  ( ph  ->  ( # `  I
)  e.  RR )
4313rpred 11303 . . . 4  |-  ( ph  ->  ( U  -  E
)  e.  RR )
44 pntlem1.v . . . . . . 7  |-  ( ph  ->  V  e.  RR+ )
4529, 44rpdivcld 11320 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  e.  RR+ )
4645relogcld 23300 . . . . 5  |-  ( ph  ->  ( log `  ( Z  /  V ) )  e.  RR )
4746, 45rerpdivcld 11330 . . . 4  |-  ( ph  ->  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR )
4843, 47remulcld 9653 . . 3  |-  ( ph  ->  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
4942, 48remulcld 9653 . 2  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  e.  RR )
50 pntlem1.o . . . 4  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
51 fzfid 12122 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )  e.  Fin )
5250, 51syl5eqel 2494 . . 3  |-  ( ph  ->  O  e.  Fin )
537rpred 11303 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
5453adantr 463 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  U  e.  RR )
5511simp2d 1010 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  RR+ )
56 pntlem1.j . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  ( M..^ N ) )
57 elfzoelz 11857 . . . . . . . . . . . . 13  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ZZ )
5856, 57syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  ZZ )
5958peano2zd 11010 . . . . . . . . . . 11  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
6055, 59rpexpcld 12375 . . . . . . . . . 10  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR+ )
6129, 60rpdivcld 11320 . . . . . . . . 9  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR+ )
6261rprege0d 11310 . . . . . . . 8  |-  ( ph  ->  ( ( Z  / 
( K ^ ( J  +  1 ) ) )  e.  RR  /\  0  <_  ( Z  /  ( K ^
( J  +  1 ) ) ) ) )
63 flge0nn0 11990 . . . . . . . 8  |-  ( ( ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR  /\  0  <_  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  ->  ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  e.  NN0 )
64 nn0p1nn 10875 . . . . . . . 8  |-  ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  e.  NN0  ->  ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 )  e.  NN )
6562, 63, 643syl 20 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  +  1 )  e.  NN )
66 elfzuz 11736 . . . . . . . 8  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
6766, 50eleq2s 2510 . . . . . . 7  |-  ( n  e.  O  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
68 eluznn 11196 . . . . . . 7  |-  ( ( ( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )  ->  n  e.  NN )
6965, 67, 68syl2an 475 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  NN )
7054, 69nndivred 10624 . . . . 5  |-  ( (
ph  /\  n  e.  O )  ->  ( U  /  n )  e.  RR )
7129adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  Z  e.  RR+ )
7269nnrpd 11301 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  RR+ )
7371, 72rpdivcld 11320 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  n )  e.  RR+ )
741pntrf 24127 . . . . . . . . . 10  |-  R : RR+
--> RR
7574ffvelrni 6007 . . . . . . . . 9  |-  ( ( Z  /  n )  e.  RR+  ->  ( R `
 ( Z  /  n ) )  e.  RR )
7673, 75syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  O )  ->  ( R `  ( Z  /  n ) )  e.  RR )
7776, 71rerpdivcld 11330 . . . . . . 7  |-  ( (
ph  /\  n  e.  O )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  RR )
7877recnd 9651 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  CC )
7978abscld 13414 . . . . 5  |-  ( (
ph  /\  n  e.  O )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  e.  RR )
8070, 79resubcld 10027 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  e.  RR )
8172relogcld 23300 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  ( log `  n )  e.  RR )
8280, 81remulcld 9653 . . 3  |-  ( (
ph  /\  n  e.  O )  ->  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  e.  RR )
8352, 82fsumrecl 13703 . 2  |-  ( ph  -> 
sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) )  e.  RR )
84 pntlem1.m . . 3  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
85 pntlem1.n . . 3  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
86 pntlem1.U . . 3  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
87 pntlem1.K . . 3  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
88 pntlem1.V . . 3  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 24166 . 2  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
9048recnd 9651 . . . . 5  |-  ( ph  ->  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )
91 fsumconst 13754 . . . . 5  |-  ( ( I  e.  Fin  /\  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )  ->  sum_ n  e.  I  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
9239, 90, 91syl2anc 659 . . . 4  |-  ( ph  -> 
sum_ n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 24165 . . . . 5  |-  ( ph  ->  I  C_  O )
9490ralrimivw 2818 . . . . 5  |-  ( ph  ->  A. n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )
9552olcd 391 . . . . 5  |-  ( ph  ->  ( O  C_  ( ZZ>=
`  1 )  \/  O  e.  Fin )
)
96 sumss2 13695 . . . . 5  |-  ( ( ( I  C_  O  /\  A. n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )  /\  ( O  C_  ( ZZ>= ` 
1 )  \/  O  e.  Fin ) )  ->  sum_ n  e.  I  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9793, 94, 95, 96syl21anc 1229 . . . 4  |-  ( ph  -> 
sum_ n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9892, 97eqtr3d 2445 . . 3  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9948adantr 463 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
10099adantlr 713 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
101 0red 9626 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  -.  n  e.  I )  ->  0  e.  RR )
102100, 101ifclda 3916 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  e.  RR )
103 breq1 4397 . . . . 5  |-  ( ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  if ( n  e.  I ,  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  -> 
( ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) )  <->  if (
n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) ) )
104 breq1 4397 . . . . 5  |-  ( 0  =  if ( n  e.  I ,  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  -> 
( 0  <_  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  <->  if (
n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) ) )
10513rpregt0d 11309 . . . . . . . . . 10  |-  ( ph  ->  ( ( U  -  E )  e.  RR  /\  0  <  ( U  -  E ) ) )
106105adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  e.  RR  /\  0  <  ( U  -  E ) ) )
107106simpld 457 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  RR )
108 1rp 11268 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR+
109 rpaddcl 11285 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
1  +  ( L  x.  E ) )  e.  RR+ )
110108, 17, 109sylancr 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  +  ( L  x.  E ) )  e.  RR+ )
111110, 44rpmulcld 11319 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR+ )
11229, 111rpdivcld 11320 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR+ )
113112rprege0d 11310 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) )  e.  RR  /\  0  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
114 flge0nn0 11990 . . . . . . . . . . . . 13  |-  ( ( ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  /\  0  <_  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  -> 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  NN0 )
115 nn0p1nn 10875 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  NN0  ->  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN )
116113, 114, 1153syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN )
117 elfzuz 11736 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ) )
118117, 37eleq2s 2510 . . . . . . . . . . . 12  |-  ( n  e.  I  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ) )
119 eluznn 11196 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ) )  ->  n  e.  NN )
120116, 118, 119syl2an 475 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  NN )
121120nnrpd 11301 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  RR+ )
122121relogcld 23300 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  n )  e.  RR )
123122, 120nndivred 10624 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  n
)  /  n )  e.  RR )
124107, 123remulcld 9653 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  n )  /  n ) )  e.  RR )
12593sselda 3441 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  O )
126125, 82syldan 468 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  e.  RR )
127 simpr 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  I )
128127, 37syl6eleq 2500 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
129 elfzle2 11742 . . . . . . . . . . 11  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  <_  ( |_ `  ( Z  /  V ) ) )
130128, 129syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  <_  ( |_ `  ( Z  /  V ) ) )
13145rpred 11303 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  /  V
)  e.  RR )
132131adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  V )  e.  RR )
133 elfzelz 11740 . . . . . . . . . . . 12  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  e.  ZZ )
134128, 133syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  ZZ )
135 flge 11977 . . . . . . . . . . 11  |-  ( ( ( Z  /  V
)  e.  RR  /\  n  e.  ZZ )  ->  ( n  <_  ( Z  /  V )  <->  n  <_  ( |_ `  ( Z  /  V ) ) ) )
136132, 134, 135syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
n  <_  ( Z  /  V )  <->  n  <_  ( |_ `  ( Z  /  V ) ) ) )
137130, 136mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  n  <_  ( Z  /  V
) )
138120nnred 10590 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  RR )
139 ere 14031 . . . . . . . . . . . 12  |-  _e  e.  RR
140139a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  _e  e.  RR )
141112rpred 11303 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
142141adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
143139a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  _e  e.  RR )
14429rpsqrtcld 13390 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( sqr `  Z
)  e.  RR+ )
145144rpred 11303 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sqr `  Z
)  e.  RR )
14631simp2d 1010 . . . . . . . . . . . . 13  |-  ( ph  ->  _e  <_  ( sqr `  Z ) )
147111rpred 11303 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )
14860rpred 11303 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR )
14988simpld 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) ) )
150149simprd 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) )
15155rpcnd 11305 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  CC )
15255, 58rpexpcld 12375 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K ^ J
)  e.  RR+ )
153152rpcnd 11305 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( K ^ J
)  e.  CC )
154151, 153mulcomd 9646 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( ( K ^ J )  x.  K ) )
1551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 24162 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
156155simp1d 1009 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  M  e.  NN )
157 elfzouz 11861 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( ZZ>= `  M )
)
15856, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  J  e.  ( ZZ>= `  M ) )
159 eluznn 11196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
160156, 158, 159syl2anc 659 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  e.  NN )
161160nnnn0d 10892 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  NN0 )
162151, 161expp1d 12353 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  =  ( ( K ^ J )  x.  K ) )
163154, 162eqtr4d 2446 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( K ^
( J  +  1 ) ) )
164150, 163breqtrd 4418 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K ^ ( J  + 
1 ) ) )
165147, 148, 164ltled 9764 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( K ^ ( J  + 
1 ) ) )
166 fzofzp1 11944 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  ( M..^ N
)  ->  ( J  +  1 )  e.  ( M ... N
) )
16756, 166syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  +  1 )  e.  ( M ... N ) )
1681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 24163 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( J  +  1 )  e.  ( M ... N
) )  ->  ( X  <  ( K ^
( J  +  1 ) )  /\  ( K ^ ( J  + 
1 ) )  <_ 
( sqr `  Z
) ) )
169167, 168mpdan 666 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X  <  ( K ^ ( J  + 
1 ) )  /\  ( K ^ ( J  +  1 ) )  <_  ( sqr `  Z
) ) )
170169simprd 461 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  <_  ( sqr `  Z ) )
171147, 148, 145, 165, 170letrd 9772 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( sqr `  Z ) )
172147, 145, 144lemul2d 11343 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  <_  ( sqr `  Z )  <->  ( ( sqr `  Z )  x.  ( ( 1  +  ( L  x.  E
) )  x.  V
) )  <_  (
( sqr `  Z
)  x.  ( sqr `  Z ) ) ) )
173171, 172mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  ( ( sqr `  Z )  x.  ( sqr `  Z ) ) )
17429rprege0d 11310 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Z  e.  RR  /\  0  <_  Z )
)
175 remsqsqrt 13237 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
176174, 175syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
177173, 176breqtrd 4418 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  Z )
178145, 30, 111lemuldivd 11348 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( sqr `  Z )  x.  (
( 1  +  ( L  x.  E ) )  x.  V ) )  <_  Z  <->  ( sqr `  Z )  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
179177, 178mpbid 210 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sqr `  Z
)  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
180143, 145, 141, 146, 179letrd 9772 . . . . . . . . . . . 12  |-  ( ph  ->  _e  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
181180adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
182 reflcl 11968 . . . . . . . . . . . . . 14  |-  ( ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  ->  ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  e.  RR )
183 peano2re 9786 . . . . . . . . . . . . . 14  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  RR  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
184141, 182, 1833syl 20 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
185184adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
186 fllep1 11973 . . . . . . . . . . . . 13  |-  ( ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_ 
( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) )
187142, 186syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_ 
( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) )
188 elfzle1 11741 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 )  <_  n
)
189128, 188syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  <_  n )
190142, 185, 138, 187, 189letrd 9772 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  n )
191140, 142, 138, 181, 190letrd 9772 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  n )
192140, 138, 132, 191, 137letrd 9772 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  ( Z  /  V
) )
193 logdivle 23299 . . . . . . . . . 10  |-  ( ( ( n  e.  RR  /\  _e  <_  n )  /\  ( ( Z  /  V )  e.  RR  /\  _e  <_  ( Z  /  V ) ) )  ->  ( n  <_ 
( Z  /  V
)  <->  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) )  <_  ( ( log `  n )  /  n
) ) )
194138, 191, 132, 192, 193syl22anc 1231 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
n  <_  ( Z  /  V )  <->  ( ( log `  ( Z  /  V ) )  / 
( Z  /  V
) )  <_  (
( log `  n
)  /  n ) ) )
195137, 194mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  <_ 
( ( log `  n
)  /  n ) )
19647adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR )
197 lemul2 10435 . . . . . . . . 9  |-  ( ( ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR  /\  ( ( log `  n )  /  n )  e.  RR  /\  ( ( U  -  E )  e.  RR  /\  0  <  ( U  -  E
) ) )  -> 
( ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) )  <_  ( ( log `  n )  /  n
)  <->  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) ) )
198196, 123, 106, 197syl3anc 1230 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  <_ 
( ( log `  n
)  /  n )  <-> 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) ) )
199195, 198mpbid 210 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) )
20013rpcnd 11305 . . . . . . . . . . 11  |-  ( ph  ->  ( U  -  E
)  e.  CC )
201200adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  CC )
202122recnd 9651 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  n )  e.  CC )
203121rpcnne0d 11312 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  CC  /\  n  =/=  0 ) )
204 div23 10266 . . . . . . . . . 10  |-  ( ( ( U  -  E
)  e.  CC  /\  ( log `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( log `  n
) )  /  n
)  =  ( ( ( U  -  E
)  /  n )  x.  ( log `  n
) ) )
205201, 202, 203, 204syl3anc 1230 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  x.  ( log `  n ) )  /  n )  =  ( ( ( U  -  E )  /  n )  x.  ( log `  n ) ) )
206 divass 10265 . . . . . . . . . 10  |-  ( ( ( U  -  E
)  e.  CC  /\  ( log `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( log `  n
) )  /  n
)  =  ( ( U  -  E )  x.  ( ( log `  n )  /  n
) ) )
207201, 202, 203, 206syl3anc 1230 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  x.  ( log `  n ) )  /  n )  =  ( ( U  -  E )  x.  (
( log `  n
)  /  n ) ) )
208205, 207eqtr3d 2445 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  /  n
)  x.  ( log `  n ) )  =  ( ( U  -  E )  x.  (
( log `  n
)  /  n ) ) )
20943adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  RR )
210209, 120nndivred 10624 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  e.  RR )
211125, 80syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  e.  RR )
212 log1 23263 . . . . . . . . . 10  |-  ( log `  1 )  =  0
213120nnge1d 10618 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  1  <_  n )
214 logleb 23280 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR+  /\  n  e.  RR+ )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
215108, 121, 214sylancr 661 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
216213, 215mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  1 )  <_ 
( log `  n
) )
217212, 216syl5eqbrr 4428 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  0  <_  ( log `  n
) )
2187rpcnd 11305 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CC )
219218adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  U  e.  CC )
22016rpred 11303 . . . . . . . . . . . . 13  |-  ( ph  ->  E  e.  RR )
221220adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  E  e.  RR )
222221recnd 9651 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  E  e.  CC )
223 divsubdir 10280 . . . . . . . . . . 11  |-  ( ( U  e.  CC  /\  E  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( U  -  E )  /  n )  =  ( ( U  /  n
)  -  ( E  /  n ) ) )
224219, 222, 203, 223syl3anc 1230 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  =  ( ( U  /  n )  -  ( E  /  n
) ) )
225125, 79syldan 468 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  e.  RR )
226221, 120nndivred 10624 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( E  /  n )  e.  RR )
227125, 70syldan 468 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( U  /  n )  e.  RR )
228125, 76syldan 468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  ( R `  ( Z  /  n ) )  e.  RR )
229228recnd 9651 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  ( R `  ( Z  /  n ) )  e.  CC )
23029adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  Z  e.  RR+ )
231230rpcnne0d 11312 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  e.  CC  /\  Z  =/=  0 ) )
232 divdiv2 10296 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R `  ( Z  /  n ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) )  =  ( ( ( R `  ( Z  /  n
) )  x.  n
)  /  Z ) )
233229, 231, 203, 232syl3anc 1230 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) )  =  ( ( ( R `
 ( Z  /  n ) )  x.  n )  /  Z
) )
234121rpcnd 11305 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  CC )
235 div23 10266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R `  ( Z  /  n ) )  e.  CC  /\  n  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  n ) )  x.  n )  /  Z
)  =  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )
236229, 234, 231, 235syl3anc 1230 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( R `  ( Z  /  n
) )  x.  n
)  /  Z )  =  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )
237233, 236eqtrd 2443 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) )  =  ( ( ( R `
 ( Z  /  n ) )  /  Z )  x.  n
) )
238237fveq2d 5852 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  =  ( abs `  (
( ( R `  ( Z  /  n
) )  /  Z
)  x.  n ) ) )
239125, 78syldan 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  CC )
240239, 234absmuld 13432 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  ( abs `  n
) ) )
241121rprege0d 11310 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  RR  /\  0  <_  n ) )
242 absid 13276 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
243241, 242syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  n )  =  n )
244243oveq2d 6293 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  (
( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  ( abs `  n
) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n ) )
245238, 240, 2443eqtrd 2447 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n ) )
24630adantr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  Z  e.  RR )
247246, 120nndivred 10624 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  e.  RR )
24844rpregt0d 11309 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( V  e.  RR  /\  0  <  V ) )
249248adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  ( V  e.  RR  /\  0  <  V ) )
250 lemuldiv2 10464 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  RR  /\  Z  e.  RR  /\  ( V  e.  RR  /\  0  <  V ) )  -> 
( ( V  x.  n )  <_  Z  <->  n  <_  ( Z  /  V ) ) )
251138, 246, 249, 250syl3anc 1230 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
( V  x.  n
)  <_  Z  <->  n  <_  ( Z  /  V ) ) )
252137, 251mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  ( V  x.  n )  <_  Z )
253249simpld 457 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  V  e.  RR )
254253, 246, 121lemuldivd 11348 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( V  x.  n
)  <_  Z  <->  V  <_  ( Z  /  n ) ) )
255252, 254mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  V  <_  ( Z  /  n
) )
256111rpregt0d 11309 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
257256adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
258121rpregt0d 11309 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  RR  /\  0  <  n ) )
259 lediv23 10476 . . . . . . . . . . . . . . . . 17  |-  ( ( Z  e.  RR  /\  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) )  <_  n  <->  ( Z  /  n )  <_  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
260246, 257, 258, 259syl3anc 1230 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  <_  n  <->  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
261190, 260mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  <_ 
( ( 1  +  ( L  x.  E
) )  x.  V
) )
26244rpred 11303 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  V  e.  RR )
263262adantr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  V  e.  RR )
264147adantr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( 1  +  ( L  x.  E ) )  x.  V )  e.  RR )
265 elicc2 11641 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  RR  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )  ->  ( ( Z  /  n )  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) )  <->  ( ( Z  /  n )  e.  RR  /\  V  <_ 
( Z  /  n
)  /\  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
266263, 264, 265syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( Z  /  n
)  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <->  ( ( Z  /  n )  e.  RR  /\  V  <_ 
( Z  /  n
)  /\  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
267247, 255, 261, 266mpbir3and 1180 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
26888simprd 461 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
269268adantr 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
270 fveq2 5848 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( Z  /  n )  ->  ( R `  u )  =  ( R `  ( Z  /  n
) ) )
271 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( Z  /  n )  ->  u  =  ( Z  /  n ) )
272270, 271oveq12d 6295 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( Z  /  n )  ->  (
( R `  u
)  /  u )  =  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )
273272fveq2d 5852 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( Z  /  n )  ->  ( abs `  ( ( R `
 u )  /  u ) )  =  ( abs `  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) ) ) )
274273breq1d 4404 . . . . . . . . . . . . . . 15  |-  ( u  =  ( Z  /  n )  ->  (
( abs `  (
( R `  u
)  /  u ) )  <_  E  <->  ( abs `  ( ( R `  ( Z  /  n
) )  /  ( Z  /  n ) ) )  <_  E )
)
275274rspcv 3155 . . . . . . . . . . . . . 14  |-  ( ( Z  /  n )  e.  ( V [,] ( ( 1  +  ( L  x.  E
) )  x.  V
) )  ->  ( A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  <_  E ) )
276267, 269, 275sylc 59 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  <_  E )
277245, 276eqbrtrrd 4416 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n )  <_  E )
278225, 221, 121lemuldivd 11348 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n )  <_  E 
<->  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  <_  ( E  /  n ) ) )
279277, 278mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  <_ 
( E  /  n
) )
280225, 226, 227, 279lesub2dd 10208 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  /  n
)  -  ( E  /  n ) )  <_  ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) ) )
281224, 280eqbrtrd 4414 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  <_  ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) ) )
282210, 211, 122, 217, 281lemul1ad 10524 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  /  n
)  x.  ( log `  n ) )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
283208, 282eqbrtrrd 4416 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  n )  /  n ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
28499, 124, 126, 199, 283letrd 9772 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
285284adantlr 713 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
28669nnred 10590 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  RR )
28729, 152rpdivcld 11320 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR+ )
288287rpred 11303 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR )
289288adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  ( K ^ J ) )  e.  RR )
29023simpld 457 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR+ )
29129, 290rpdivcld 11320 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  /  Y
)  e.  RR+ )
292291rpred 11303 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
293292adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  Y )  e.  RR )
294 simpr 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  O )
295294, 50syl6eleq 2500 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) ) )
296 elfzle2 11742 . . . . . . . . . . 11  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) )  ->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
297295, 296syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
29869nnzd 11006 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  ZZ )
299 flge 11977 . . . . . . . . . . 11  |-  ( ( ( Z  /  ( K ^ J ) )  e.  RR  /\  n  e.  ZZ )  ->  (
n  <_  ( Z  /  ( K ^ J ) )  <->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
300289, 298, 299syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  (
n  <_  ( Z  /  ( K ^ J ) )  <->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
301297, 300mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( Z  /  ( K ^ J ) ) )
302290rpred 11303 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR )
30324simpld 457 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  RR+ )
304303rpred 11303 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
305152rpred 11303 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ^ J
)  e.  RR )
30624simprd 461 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <  X )
307302, 304, 306ltled 9764 . . . . . . . . . . . 12  |-  ( ph  ->  Y  <_  X )
308 elfzofz 11872 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( M ... N ) )
30956, 308syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  ( M ... N ) )
3101, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 24163 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
311309, 310mpdan 666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  <  ( K ^ J )  /\  ( K ^ J )  <_  ( sqr `  Z
) ) )
312311simpld 457 . . . . . . . . . . . . 13  |-  ( ph  ->  X  <  ( K ^ J ) )
313304, 305, 312ltled 9764 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  ( K ^ J ) )
314302, 304, 305, 307, 313letrd 9772 . . . . . . . . . . 11  |-  ( ph  ->  Y  <_  ( K ^ J ) )
315290, 152, 29lediv2d 11327 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  <_  ( K ^ J )  <->  ( Z  /  ( K ^ J ) )  <_ 
( Z  /  Y
) ) )
316314, 315mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  <_  ( Z  /  Y ) )
317316adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  ( K ^ J ) )  <_ 
( Z  /  Y
) )
318286, 289, 293, 301, 317letrd 9772 . . . . . . . 8  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( Z  /  Y
) )
31969, 318jca 530 . . . . . . 7  |-  ( (
ph  /\  n  e.  O )  ->  (
n  e.  NN  /\  n  <_  ( Z  /  Y ) ) )
3201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 24164 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  n  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
321319, 320syldan 468 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  0  <_  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
322321adantr 463 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  -.  n  e.  I )  ->  0  <_  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
323103, 104, 285, 322ifbothda 3919 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
32452, 102, 82, 323fsumle 13762 . . 3  |-  ( ph  -> 
sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) ) )
32598, 324eqbrtrd 4414 . 2  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  <_  sum_ n  e.  O  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
32636, 49, 83, 89, 325letrd 9772 1  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754    C_ wss 3413   ifcif 3884   class class class wbr 4394    |-> cmpt 4452   ` cfv 5568  (class class class)co 6277   Fincfn 7553   CCcc 9519   RRcr 9520   0cc0 9521   1c1 9522    + caddc 9524    x. cmul 9526   +oocpnf 9654    < clt 9657    <_ cle 9658    - cmin 9840    / cdiv 10246   NNcn 10575   2c2 10625   3c3 10626   4c4 10627   8c8 10631   NN0cn0 10835   ZZcz 10904  ;cdc 11018   ZZ>=cuz 11126   RR+crp 11264   (,)cioo 11581   [,)cico 11583   [,]cicc 11584   ...cfz 11724  ..^cfzo 11852   |_cfl 11962   ^cexp 12208   #chash 12450   sqrcsqrt 13213   abscabs 13214   sum_csu 13655   expce 14004   _eceu 14005   logclog 23232  ψcchp 23745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-pm 7459  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-exp 12209  df-fac 12396  df-bc 12423  df-hash 12451  df-shft 13047  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-limsup 13441  df-clim 13458  df-rlim 13459  df-sum 13656  df-ef 14010  df-e 14011  df-sin 14012  df-cos 14013  df-pi 14015  df-dvds 14194  df-gcd 14352  df-prm 14425  df-pc 14568  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-rest 15035  df-topn 15036  df-0g 15054  df-gsum 15055  df-topgen 15056  df-pt 15057  df-prds 15060  df-xrs 15114  df-qtop 15119  df-imas 15120  df-xps 15122  df-mre 15198  df-mrc 15199  df-acs 15201  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-mulg 16382  df-cntz 16677  df-cmn 17122  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-fbas 18734  df-fg 18735  df-cnfld 18739  df-top 19689  df-bases 19691  df-topon 19692  df-topsp 19693  df-cld 19810  df-ntr 19811  df-cls 19812  df-nei 19890  df-lp 19928  df-perf 19929  df-cn 20019  df-cnp 20020  df-haus 20107  df-tx 20353  df-hmeo 20546  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-xms 21113  df-ms 21114  df-tms 21115  df-cncf 21672  df-limc 22560  df-dv 22561  df-log 23234  df-vma 23750  df-chp 23751
This theorem is referenced by:  pntlemi  24168
  Copyright terms: Public domain W3C validator