MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Visualization version   Unicode version

Theorem pntlemj 24520
Description: Lemma for pnt 24531. The induction step. Using pntibnd 24510, we find an interval in  K ^ J ... K ^ ( J  + 
1 ) which is sufficiently large and has a much smaller value,  R ( z )  / 
z  <_  E (instead of our original bound 
R ( z )  /  z  <_  U). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntlem1.K  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntlem1.o  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
pntlem1.v  |-  ( ph  ->  V  e.  RR+ )
pntlem1.V  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
pntlem1.j  |-  ( ph  ->  J  e.  ( M..^ N ) )
pntlem1.i  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
Assertion
Ref Expression
pntlemj  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Distinct variable groups:    z, C    n, I    y, n, z, J    u, n, L, y, z    n, K, y, z    n, M, z    n, O, z    ph, n    n, N, z    R, n, u, y, z   
n, V, u    U, n, z    n, W, z   
n, X, y, z   
n, Y, z    n, a, u, y, z, E   
n, Z, u, z
Allowed substitution hints:    ph( y, z, u, a)    A( y, z, u, n, a)    B( y, z, u, n, a)    C( y, u, n, a)    D( y, z, u, n, a)    R( a)    U( y, u, a)    F( y, z, u, n, a)    I( y, z, u, a)    J( u, a)    K( u, a)    L( a)    M( y, u, a)    N( y, u, a)    O( y, u, a)    V( y, z, a)    W( y, u, a)    X( u, a)    Y( y, u, a)    Z( y, a)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . . . . . 7  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . . . . . 7  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . . . . . 7  |-  D  =  ( A  +  1 )
6 pntlem1.f . . . . . . 7  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . . . . . 7  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . . . . . 7  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . . . . . 7  |-  E  =  ( U  /  D
)
10 pntlem1.k . . . . . . 7  |-  K  =  ( exp `  ( B  /  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 24512 . . . . . 6  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1211simp3d 1044 . . . . 5  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1312simp3d 1044 . . . 4  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
141, 2, 3, 4, 5, 6pntlemd 24511 . . . . . . . 8  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
1514simp1d 1042 . . . . . . 7  |-  ( ph  ->  L  e.  RR+ )
1611simp1d 1042 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1715, 16rpmulcld 11380 . . . . . 6  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
18 8nn 10796 . . . . . . 7  |-  8  e.  NN
19 nnrp 11334 . . . . . . 7  |-  ( 8  e.  NN  ->  8  e.  RR+ )
2018, 19ax-mp 5 . . . . . 6  |-  8  e.  RR+
21 rpdivcl 11348 . . . . . 6  |-  ( ( ( L  x.  E
)  e.  RR+  /\  8  e.  RR+ )  ->  (
( L  x.  E
)  /  8 )  e.  RR+ )
2217, 20, 21sylancl 675 . . . . 5  |-  ( ph  ->  ( ( L  x.  E )  /  8
)  e.  RR+ )
23 pntlem1.y . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
24 pntlem1.x . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
25 pntlem1.c . . . . . . . . 9  |-  ( ph  ->  C  e.  RR+ )
26 pntlem1.w . . . . . . . . 9  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
27 pntlem1.z . . . . . . . . 9  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 24514 . . . . . . . 8  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2928simp1d 1042 . . . . . . 7  |-  ( ph  ->  Z  e.  RR+ )
3029rpred 11364 . . . . . 6  |-  ( ph  ->  Z  e.  RR )
3128simp2d 1043 . . . . . . 7  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
3231simp1d 1042 . . . . . 6  |-  ( ph  ->  1  <  Z )
3330, 32rplogcld 23657 . . . . 5  |-  ( ph  ->  ( log `  Z
)  e.  RR+ )
3422, 33rpmulcld 11380 . . . 4  |-  ( ph  ->  ( ( ( L  x.  E )  / 
8 )  x.  ( log `  Z ) )  e.  RR+ )
3513, 34rpmulcld 11380 . . 3  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  e.  RR+ )
3635rpred 11364 . 2  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  e.  RR )
37 pntlem1.i . . . . . 6  |-  I  =  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )
38 fzfid 12224 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  e.  Fin )
3937, 38syl5eqel 2553 . . . . 5  |-  ( ph  ->  I  e.  Fin )
40 hashcl 12576 . . . . 5  |-  ( I  e.  Fin  ->  ( # `
 I )  e. 
NN0 )
4139, 40syl 17 . . . 4  |-  ( ph  ->  ( # `  I
)  e.  NN0 )
4241nn0red 10950 . . 3  |-  ( ph  ->  ( # `  I
)  e.  RR )
4313rpred 11364 . . . 4  |-  ( ph  ->  ( U  -  E
)  e.  RR )
44 pntlem1.v . . . . . . 7  |-  ( ph  ->  V  e.  RR+ )
4529, 44rpdivcld 11381 . . . . . 6  |-  ( ph  ->  ( Z  /  V
)  e.  RR+ )
4645relogcld 23651 . . . . 5  |-  ( ph  ->  ( log `  ( Z  /  V ) )  e.  RR )
4746, 45rerpdivcld 11392 . . . 4  |-  ( ph  ->  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR )
4843, 47remulcld 9689 . . 3  |-  ( ph  ->  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
4942, 48remulcld 9689 . 2  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  e.  RR )
50 pntlem1.o . . . 4  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
51 fzfid 12224 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )  e.  Fin )
5250, 51syl5eqel 2553 . . 3  |-  ( ph  ->  O  e.  Fin )
537rpred 11364 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
5453adantr 472 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  U  e.  RR )
5511simp2d 1043 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  RR+ )
56 pntlem1.j . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  ( M..^ N ) )
57 elfzoelz 11947 . . . . . . . . . . . . 13  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ZZ )
5856, 57syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  ZZ )
5958peano2zd 11066 . . . . . . . . . . 11  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
6055, 59rpexpcld 12477 . . . . . . . . . 10  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR+ )
6129, 60rpdivcld 11381 . . . . . . . . 9  |-  ( ph  ->  ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR+ )
6261rprege0d 11371 . . . . . . . 8  |-  ( ph  ->  ( ( Z  / 
( K ^ ( J  +  1 ) ) )  e.  RR  /\  0  <_  ( Z  /  ( K ^
( J  +  1 ) ) ) ) )
63 flge0nn0 12087 . . . . . . . 8  |-  ( ( ( Z  /  ( K ^ ( J  + 
1 ) ) )  e.  RR  /\  0  <_  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  ->  ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  e.  NN0 )
64 nn0p1nn 10933 . . . . . . . 8  |-  ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  e.  NN0  ->  ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 )  e.  NN )
6562, 63, 643syl 18 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  +  1 )  e.  NN )
66 elfzuz 11822 . . . . . . . 8  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
6766, 50eleq2s 2567 . . . . . . 7  |-  ( n  e.  O  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )
68 eluznn 11252 . . . . . . 7  |-  ( ( ( ( |_ `  ( Z  /  ( K ^ ( J  + 
1 ) ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ) )  ->  n  e.  NN )
6965, 67, 68syl2an 485 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  NN )
7054, 69nndivred 10680 . . . . 5  |-  ( (
ph  /\  n  e.  O )  ->  ( U  /  n )  e.  RR )
7129adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  Z  e.  RR+ )
7269nnrpd 11362 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  RR+ )
7371, 72rpdivcld 11381 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  n )  e.  RR+ )
741pntrf 24480 . . . . . . . . . 10  |-  R : RR+
--> RR
7574ffvelrni 6036 . . . . . . . . 9  |-  ( ( Z  /  n )  e.  RR+  ->  ( R `
 ( Z  /  n ) )  e.  RR )
7673, 75syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  O )  ->  ( R `  ( Z  /  n ) )  e.  RR )
7776, 71rerpdivcld 11392 . . . . . . 7  |-  ( (
ph  /\  n  e.  O )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  RR )
7877recnd 9687 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  CC )
7978abscld 13575 . . . . 5  |-  ( (
ph  /\  n  e.  O )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  e.  RR )
8070, 79resubcld 10068 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  e.  RR )
8172relogcld 23651 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  ( log `  n )  e.  RR )
8280, 81remulcld 9689 . . 3  |-  ( (
ph  /\  n  e.  O )  ->  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  e.  RR )
8352, 82fsumrecl 13877 . 2  |-  ( ph  -> 
sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) )  e.  RR )
84 pntlem1.m . . 3  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
85 pntlem1.n . . 3  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
86 pntlem1.U . . 3  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
87 pntlem1.K . . 3  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
88 pntlem1.V . . 3  |-  ( ph  ->  ( ( ( K ^ J )  < 
V  /\  ( (
1  +  ( L  x.  E ) )  x.  V )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 24519 . 2  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
9048recnd 9687 . . . . 5  |-  ( ph  ->  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )
91 fsumconst 13928 . . . . 5  |-  ( ( I  e.  Fin  /\  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )  ->  sum_ n  e.  I  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
9239, 90, 91syl2anc 673 . . . 4  |-  ( ph  -> 
sum_ n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  ( ( # `  I )  x.  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 24518 . . . . 5  |-  ( ph  ->  I  C_  O )
9490ralrimivw 2810 . . . . 5  |-  ( ph  ->  A. n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )
9552olcd 400 . . . . 5  |-  ( ph  ->  ( O  C_  ( ZZ>=
`  1 )  \/  O  e.  Fin )
)
96 sumss2 13869 . . . . 5  |-  ( ( ( I  C_  O  /\  A. n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  CC )  /\  ( O  C_  ( ZZ>= ` 
1 )  \/  O  e.  Fin ) )  ->  sum_ n  e.  I  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9793, 94, 95, 96syl21anc 1291 . . . 4  |-  ( ph  -> 
sum_ n  e.  I 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9892, 97eqtr3d 2507 . . 3  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  =  sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 ) )
9948adantr 472 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
10099adantlr 729 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  e.  RR )
101 0red 9662 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  -.  n  e.  I )  ->  0  e.  RR )
102100, 101ifclda 3904 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  e.  RR )
103 breq1 4398 . . . . 5  |-  ( ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  =  if ( n  e.  I ,  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  -> 
( ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) )  <->  if (
n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) ) )
104 breq1 4398 . . . . 5  |-  ( 0  =  if ( n  e.  I ,  ( ( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  -> 
( 0  <_  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  <->  if (
n  e.  I ,  ( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) ) )
10513rpregt0d 11370 . . . . . . . . . 10  |-  ( ph  ->  ( ( U  -  E )  e.  RR  /\  0  <  ( U  -  E ) ) )
106105adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  e.  RR  /\  0  <  ( U  -  E ) ) )
107106simpld 466 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  RR )
108 1rp 11329 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR+
109 rpaddcl 11346 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
1  +  ( L  x.  E ) )  e.  RR+ )
110108, 17, 109sylancr 676 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  +  ( L  x.  E ) )  e.  RR+ )
111110, 44rpmulcld 11380 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR+ )
11229, 111rpdivcld 11381 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR+ )
113112rprege0d 11371 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) )  e.  RR  /\  0  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
114 flge0nn0 12087 . . . . . . . . . . . . 13  |-  ( ( ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  /\  0  <_  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  -> 
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  NN0 )
115 nn0p1nn 10933 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  NN0  ->  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN )
116113, 114, 1153syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN )
117 elfzuz 11822 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ) )
118117, 37eleq2s 2567 . . . . . . . . . . . 12  |-  ( n  e.  I  ->  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ) )
119 eluznn 11252 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ) )  ->  n  e.  NN )
120116, 118, 119syl2an 485 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  NN )
121120nnrpd 11362 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  RR+ )
122121relogcld 23651 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  n )  e.  RR )
123122, 120nndivred 10680 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  n
)  /  n )  e.  RR )
124107, 123remulcld 9689 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  n )  /  n ) )  e.  RR )
12593sselda 3418 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  O )
126125, 82syldan 478 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) )  e.  RR )
127 simpr 468 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  I )
128127, 37syl6eleq 2559 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  ( ( ( |_
`  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) ) )
129 elfzle2 11829 . . . . . . . . . . 11  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  <_  ( |_ `  ( Z  /  V ) ) )
130128, 129syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  <_  ( |_ `  ( Z  /  V ) ) )
13145rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  /  V
)  e.  RR )
132131adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  V )  e.  RR )
133 elfzelz 11826 . . . . . . . . . . . 12  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  n  e.  ZZ )
134128, 133syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  ZZ )
135 flge 12074 . . . . . . . . . . 11  |-  ( ( ( Z  /  V
)  e.  RR  /\  n  e.  ZZ )  ->  ( n  <_  ( Z  /  V )  <->  n  <_  ( |_ `  ( Z  /  V ) ) ) )
136132, 134, 135syl2anc 673 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
n  <_  ( Z  /  V )  <->  n  <_  ( |_ `  ( Z  /  V ) ) ) )
137130, 136mpbird 240 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  n  <_  ( Z  /  V
) )
138120nnred 10646 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  RR )
139 ere 14220 . . . . . . . . . . . 12  |-  _e  e.  RR
140139a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  _e  e.  RR )
141112rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
142141adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR )
143139a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  _e  e.  RR )
14429rpsqrtcld 13550 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( sqr `  Z
)  e.  RR+ )
145144rpred 11364 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sqr `  Z
)  e.  RR )
14631simp2d 1043 . . . . . . . . . . . . 13  |-  ( ph  ->  _e  <_  ( sqr `  Z ) )
147111rpred 11364 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )
14860rpred 11364 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  e.  RR )
14988simpld 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) ) )
150149simprd 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K  x.  ( K ^ J
) ) )
15155rpcnd 11366 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  CC )
15255, 58rpexpcld 12477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K ^ J
)  e.  RR+ )
153152rpcnd 11366 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( K ^ J
)  e.  CC )
154151, 153mulcomd 9682 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( ( K ^ J )  x.  K ) )
1551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 24515 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
156155simp1d 1042 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  M  e.  NN )
157 elfzouz 11951 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( ZZ>= `  M )
)
15856, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  J  e.  ( ZZ>= `  M ) )
159 eluznn 11252 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
160156, 158, 159syl2anc 673 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  e.  NN )
161160nnnn0d 10949 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  NN0 )
162151, 161expp1d 12455 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  =  ( ( K ^ J )  x.  K ) )
163154, 162eqtr4d 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( K  x.  ( K ^ J ) )  =  ( K ^
( J  +  1 ) ) )
164150, 163breqtrd 4420 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <  ( K ^ ( J  + 
1 ) ) )
165147, 148, 164ltled 9800 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( K ^ ( J  + 
1 ) ) )
166 fzofzp1 12037 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  ( M..^ N
)  ->  ( J  +  1 )  e.  ( M ... N
) )
16756, 166syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  +  1 )  e.  ( M ... N ) )
1681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 24516 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( J  +  1 )  e.  ( M ... N
) )  ->  ( X  <  ( K ^
( J  +  1 ) )  /\  ( K ^ ( J  + 
1 ) )  <_ 
( sqr `  Z
) ) )
169167, 168mpdan 681 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X  <  ( K ^ ( J  + 
1 ) )  /\  ( K ^ ( J  +  1 ) )  <_  ( sqr `  Z
) ) )
170169simprd 470 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ ( J  +  1 ) )  <_  ( sqr `  Z ) )
171147, 148, 145, 165, 170letrd 9809 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1  +  ( L  x.  E
) )  x.  V
)  <_  ( sqr `  Z ) )
172147, 145, 144lemul2d 11405 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  <_  ( sqr `  Z )  <->  ( ( sqr `  Z )  x.  ( ( 1  +  ( L  x.  E
) )  x.  V
) )  <_  (
( sqr `  Z
)  x.  ( sqr `  Z ) ) ) )
173171, 172mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  ( ( sqr `  Z )  x.  ( sqr `  Z ) ) )
17429rprege0d 11371 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Z  e.  RR  /\  0  <_  Z )
)
175 remsqsqrt 13397 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
176174, 175syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
177173, 176breqtrd 4420 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  Z )
178145, 30, 111lemuldivd 11410 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( sqr `  Z )  x.  (
( 1  +  ( L  x.  E ) )  x.  V ) )  <_  Z  <->  ( sqr `  Z )  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
179177, 178mpbid 215 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sqr `  Z
)  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
180143, 145, 141, 146, 179letrd 9809 . . . . . . . . . . . 12  |-  ( ph  ->  _e  <_  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
181180adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
182 reflcl 12065 . . . . . . . . . . . . . 14  |-  ( ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  ->  ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  e.  RR )
183 peano2re 9824 . . . . . . . . . . . . . 14  |-  ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  e.  RR  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
184141, 182, 1833syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
185184adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  e.  RR )
186 fllep1 12070 . . . . . . . . . . . . 13  |-  ( ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  e.  RR  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_ 
( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) )
187142, 186syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_ 
( ( |_ `  ( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) )
188 elfzle1 11828 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z  /  V ) ) )  ->  ( ( |_ `  ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) ) )  +  1 )  <_  n
)
189128, 188syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 )  <_  n )
190142, 185, 138, 187, 189letrd 9809 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <_  n )
191140, 142, 138, 181, 190letrd 9809 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  n )
192140, 138, 132, 191, 137letrd 9809 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  _e  <_  ( Z  /  V
) )
193 logdivle 23650 . . . . . . . . . 10  |-  ( ( ( n  e.  RR  /\  _e  <_  n )  /\  ( ( Z  /  V )  e.  RR  /\  _e  <_  ( Z  /  V ) ) )  ->  ( n  <_ 
( Z  /  V
)  <->  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) )  <_  ( ( log `  n )  /  n
) ) )
194138, 191, 132, 192, 193syl22anc 1293 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
n  <_  ( Z  /  V )  <->  ( ( log `  ( Z  /  V ) )  / 
( Z  /  V
) )  <_  (
( log `  n
)  /  n ) ) )
195137, 194mpbid 215 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  <_ 
( ( log `  n
)  /  n ) )
19647adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR )
197 lemul2 10480 . . . . . . . . 9  |-  ( ( ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  e.  RR  /\  ( ( log `  n )  /  n )  e.  RR  /\  ( ( U  -  E )  e.  RR  /\  0  <  ( U  -  E
) ) )  -> 
( ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) )  <_  ( ( log `  n )  /  n
)  <->  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) ) )
198196, 123, 106, 197syl3anc 1292 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) )  <_ 
( ( log `  n
)  /  n )  <-> 
( ( U  -  E )  x.  (
( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) ) )
199195, 198mpbid 215 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( U  -  E )  x.  ( ( log `  n
)  /  n ) ) )
20013rpcnd 11366 . . . . . . . . . . 11  |-  ( ph  ->  ( U  -  E
)  e.  CC )
201200adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  CC )
202122recnd 9687 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  n )  e.  CC )
203121rpcnne0d 11373 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  CC  /\  n  =/=  0 ) )
204 div23 10311 . . . . . . . . . 10  |-  ( ( ( U  -  E
)  e.  CC  /\  ( log `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( log `  n
) )  /  n
)  =  ( ( ( U  -  E
)  /  n )  x.  ( log `  n
) ) )
205201, 202, 203, 204syl3anc 1292 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  x.  ( log `  n ) )  /  n )  =  ( ( ( U  -  E )  /  n )  x.  ( log `  n ) ) )
206 divass 10310 . . . . . . . . . 10  |-  ( ( ( U  -  E
)  e.  CC  /\  ( log `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( log `  n
) )  /  n
)  =  ( ( U  -  E )  x.  ( ( log `  n )  /  n
) ) )
207201, 202, 203, 206syl3anc 1292 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  x.  ( log `  n ) )  /  n )  =  ( ( U  -  E )  x.  (
( log `  n
)  /  n ) ) )
208205, 207eqtr3d 2507 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  /  n
)  x.  ( log `  n ) )  =  ( ( U  -  E )  x.  (
( log `  n
)  /  n ) ) )
20943adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( U  -  E )  e.  RR )
210209, 120nndivred 10680 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  e.  RR )
211125, 80syldan 478 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  e.  RR )
212 log1 23614 . . . . . . . . . 10  |-  ( log `  1 )  =  0
213120nnge1d 10674 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  1  <_  n )
214 logleb 23631 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR+  /\  n  e.  RR+ )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
215108, 121, 214sylancr 676 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
216213, 215mpbid 215 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  ( log `  1 )  <_ 
( log `  n
) )
217212, 216syl5eqbrr 4430 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  0  <_  ( log `  n
) )
2187rpcnd 11366 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CC )
219218adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  U  e.  CC )
22016rpred 11364 . . . . . . . . . . . . 13  |-  ( ph  ->  E  e.  RR )
221220adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  E  e.  RR )
222221recnd 9687 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  E  e.  CC )
223 divsubdir 10325 . . . . . . . . . . 11  |-  ( ( U  e.  CC  /\  E  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( U  -  E )  /  n )  =  ( ( U  /  n
)  -  ( E  /  n ) ) )
224219, 222, 203, 223syl3anc 1292 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  =  ( ( U  /  n )  -  ( E  /  n
) ) )
225125, 79syldan 478 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  e.  RR )
226221, 120nndivred 10680 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( E  /  n )  e.  RR )
227125, 70syldan 478 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( U  /  n )  e.  RR )
228125, 76syldan 478 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  ( R `  ( Z  /  n ) )  e.  RR )
229228recnd 9687 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  ( R `  ( Z  /  n ) )  e.  CC )
23029adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  Z  e.  RR+ )
231230rpcnne0d 11373 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  e.  CC  /\  Z  =/=  0 ) )
232 divdiv2 10341 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R `  ( Z  /  n ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) )  =  ( ( ( R `  ( Z  /  n
) )  x.  n
)  /  Z ) )
233229, 231, 203, 232syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) )  =  ( ( ( R `
 ( Z  /  n ) )  x.  n )  /  Z
) )
234121rpcnd 11366 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  n  e.  CC )
235 div23 10311 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R `  ( Z  /  n ) )  e.  CC  /\  n  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  n ) )  x.  n )  /  Z
)  =  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )
236229, 234, 231, 235syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( R `  ( Z  /  n
) )  x.  n
)  /  Z )  =  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )
237233, 236eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) )  =  ( ( ( R `
 ( Z  /  n ) )  /  Z )  x.  n
) )
238237fveq2d 5883 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  =  ( abs `  (
( ( R `  ( Z  /  n
) )  /  Z
)  x.  n ) ) )
239125, 78syldan 478 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( R `  ( Z  /  n ) )  /  Z )  e.  CC )
240239, 234absmuld 13593 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( ( R `  ( Z  /  n ) )  /  Z )  x.  n ) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  ( abs `  n
) ) )
241121rprege0d 11371 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  RR  /\  0  <_  n ) )
242 absid 13436 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
243241, 242syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  n )  =  n )
244243oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  (
( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  ( abs `  n
) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n ) )
245238, 240, 2443eqtrd 2509 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  =  ( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n ) )
24630adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  Z  e.  RR )
247246, 120nndivred 10680 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  e.  RR )
24844rpregt0d 11370 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( V  e.  RR  /\  0  <  V ) )
249248adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  I )  ->  ( V  e.  RR  /\  0  <  V ) )
250 lemuldiv2 10509 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  RR  /\  Z  e.  RR  /\  ( V  e.  RR  /\  0  <  V ) )  -> 
( ( V  x.  n )  <_  Z  <->  n  <_  ( Z  /  V ) ) )
251138, 246, 249, 250syl3anc 1292 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
( V  x.  n
)  <_  Z  <->  n  <_  ( Z  /  V ) ) )
252137, 251mpbird 240 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  ( V  x.  n )  <_  Z )
253249simpld 466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  V  e.  RR )
254253, 246, 121lemuldivd 11410 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( V  x.  n
)  <_  Z  <->  V  <_  ( Z  /  n ) ) )
255252, 254mpbid 215 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  V  <_  ( Z  /  n
) )
256111rpregt0d 11370 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
257256adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
258121rpregt0d 11370 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  I )  ->  (
n  e.  RR  /\  0  <  n ) )
259 lediv23 10520 . . . . . . . . . . . . . . . . 17  |-  ( ( Z  e.  RR  /\  ( ( ( 1  +  ( L  x.  E ) )  x.  V )  e.  RR  /\  0  <  ( ( 1  +  ( L  x.  E ) )  x.  V ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( Z  / 
( ( 1  +  ( L  x.  E
) )  x.  V
) )  <_  n  <->  ( Z  /  n )  <_  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )
260246, 257, 258, 259syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( Z  /  (
( 1  +  ( L  x.  E ) )  x.  V ) )  <_  n  <->  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
261190, 260mpbid 215 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  <_ 
( ( 1  +  ( L  x.  E
) )  x.  V
) )
26244rpred 11364 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  V  e.  RR )
263262adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  V  e.  RR )
264147adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  I )  ->  (
( 1  +  ( L  x.  E ) )  x.  V )  e.  RR )
265 elicc2 11724 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  RR  /\  ( ( 1  +  ( L  x.  E
) )  x.  V
)  e.  RR )  ->  ( ( Z  /  n )  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) )  <->  ( ( Z  /  n )  e.  RR  /\  V  <_ 
( Z  /  n
)  /\  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
266263, 264, 265syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  I )  ->  (
( Z  /  n
)  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) )  <->  ( ( Z  /  n )  e.  RR  /\  V  <_ 
( Z  /  n
)  /\  ( Z  /  n )  <_  (
( 1  +  ( L  x.  E ) )  x.  V ) ) ) )
267247, 255, 261, 266mpbir3and 1213 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( Z  /  n )  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) )
26888simprd 470 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
269268adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  A. u  e.  ( V [,] (
( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
270 fveq2 5879 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( Z  /  n )  ->  ( R `  u )  =  ( R `  ( Z  /  n
) ) )
271 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( Z  /  n )  ->  u  =  ( Z  /  n ) )
272270, 271oveq12d 6326 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( Z  /  n )  ->  (
( R `  u
)  /  u )  =  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )
273272fveq2d 5883 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( Z  /  n )  ->  ( abs `  ( ( R `
 u )  /  u ) )  =  ( abs `  (
( R `  ( Z  /  n ) )  /  ( Z  /  n ) ) ) )
274273breq1d 4405 . . . . . . . . . . . . . . 15  |-  ( u  =  ( Z  /  n )  ->  (
( abs `  (
( R `  u
)  /  u ) )  <_  E  <->  ( abs `  ( ( R `  ( Z  /  n
) )  /  ( Z  /  n ) ) )  <_  E )
)
275274rspcv 3132 . . . . . . . . . . . . . 14  |-  ( ( Z  /  n )  e.  ( V [,] ( ( 1  +  ( L  x.  E
) )  x.  V
) )  ->  ( A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  <_  E ) )
276267, 269, 275sylc 61 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  / 
( Z  /  n
) ) )  <_  E )
277245, 276eqbrtrrd 4418 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n )  <_  E )
278225, 221, 121lemuldivd 11410 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  x.  n )  <_  E 
<->  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) )  <_  ( E  /  n ) ) )
279277, 278mpbid 215 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) )  <_ 
( E  /  n
) )
280225, 226, 227, 279lesub2dd 10251 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  /  n
)  -  ( E  /  n ) )  <_  ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) ) )
281224, 280eqbrtrd 4416 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  /  n )  <_  ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) ) )
282210, 211, 122, 217, 281lemul1ad 10568 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
( ( U  -  E )  /  n
)  x.  ( log `  n ) )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
283208, 282eqbrtrrd 4418 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  n )  /  n ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
28499, 124, 126, 199, 283letrd 9809 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
285284adantlr 729 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  n  e.  I )  ->  (
( U  -  E
)  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) )  <_  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
28669nnred 10646 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  RR )
28729, 152rpdivcld 11381 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR+ )
288287rpred 11364 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  e.  RR )
289288adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  ( K ^ J ) )  e.  RR )
29023simpld 466 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR+ )
29129, 290rpdivcld 11381 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  /  Y
)  e.  RR+ )
292291rpred 11364 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
293292adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  Y )  e.  RR )
294 simpr 468 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  O )
295294, 50syl6eleq 2559 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) ) )
296 elfzle2 11829 . . . . . . . . . . 11  |-  ( n  e.  ( ( ( |_ `  ( Z  /  ( K ^
( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  /  ( K ^ J ) ) ) )  ->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
297295, 296syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) )
29869nnzd 11062 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  O )  ->  n  e.  ZZ )
299 flge 12074 . . . . . . . . . . 11  |-  ( ( ( Z  /  ( K ^ J ) )  e.  RR  /\  n  e.  ZZ )  ->  (
n  <_  ( Z  /  ( K ^ J ) )  <->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
300289, 298, 299syl2anc 673 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  O )  ->  (
n  <_  ( Z  /  ( K ^ J ) )  <->  n  <_  ( |_ `  ( Z  /  ( K ^ J ) ) ) ) )
301297, 300mpbird 240 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( Z  /  ( K ^ J ) ) )
302290rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR )
30324simpld 466 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  RR+ )
304303rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
305152rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ^ J
)  e.  RR )
30624simprd 470 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <  X )
307302, 304, 306ltled 9800 . . . . . . . . . . . 12  |-  ( ph  ->  Y  <_  X )
308 elfzofz 11962 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( M ... N ) )
30956, 308syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  ( M ... N ) )
3101, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 24516 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
311309, 310mpdan 681 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  <  ( K ^ J )  /\  ( K ^ J )  <_  ( sqr `  Z
) ) )
312311simpld 466 . . . . . . . . . . . . 13  |-  ( ph  ->  X  <  ( K ^ J ) )
313304, 305, 312ltled 9800 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  ( K ^ J ) )
314302, 304, 305, 307, 313letrd 9809 . . . . . . . . . . 11  |-  ( ph  ->  Y  <_  ( K ^ J ) )
315290, 152, 29lediv2d 11388 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  <_  ( K ^ J )  <->  ( Z  /  ( K ^ J ) )  <_ 
( Z  /  Y
) ) )
316314, 315mpbid 215 . . . . . . . . . 10  |-  ( ph  ->  ( Z  /  ( K ^ J ) )  <_  ( Z  /  Y ) )
317316adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  O )  ->  ( Z  /  ( K ^ J ) )  <_ 
( Z  /  Y
) )
318286, 289, 293, 301, 317letrd 9809 . . . . . . . 8  |-  ( (
ph  /\  n  e.  O )  ->  n  <_  ( Z  /  Y
) )
31969, 318jca 541 . . . . . . 7  |-  ( (
ph  /\  n  e.  O )  ->  (
n  e.  NN  /\  n  <_  ( Z  /  Y ) ) )
3201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 24517 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  n  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
321319, 320syldan 478 . . . . . 6  |-  ( (
ph  /\  n  e.  O )  ->  0  <_  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
322321adantr 472 . . . . 5  |-  ( ( ( ph  /\  n  e.  O )  /\  -.  n  e.  I )  ->  0  <_  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
323103, 104, 285, 322ifbothda 3907 . . . 4  |-  ( (
ph  /\  n  e.  O )  ->  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_ 
( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
32452, 102, 82, 323fsumle 13936 . . 3  |-  ( ph  -> 
sum_ n  e.  O  if ( n  e.  I ,  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ,  0 )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `
 ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n
) ) )
32598, 324eqbrtrd 4416 . 2  |-  ( ph  ->  ( ( # `  I
)  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V
) )  /  ( Z  /  V ) ) ) )  <_  sum_ n  e.  O  ( (
( U  /  n
)  -  ( abs `  ( ( R `  ( Z  /  n
) )  /  Z
) ) )  x.  ( log `  n
) ) )
32636, 49, 83, 89, 325letrd 9809 1  |-  ( ph  ->  ( ( U  -  E )  x.  (
( ( L  x.  E )  /  8
)  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    C_ wss 3390   ifcif 3872   class class class wbr 4395    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   +oocpnf 9690    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   4c4 10683   8c8 10687   NN0cn0 10893   ZZcz 10961  ;cdc 11074   ZZ>=cuz 11182   RR+crp 11325   (,)cioo 11660   [,)cico 11662   [,]cicc 11663   ...cfz 11810  ..^cfzo 11942   |_cfl 12059   ^cexp 12310   #chash 12553   sqrcsqrt 13373   abscabs 13374   sum_csu 13829   expce 14191   _eceu 14192   logclog 23583  ψcchp 24098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199  df-sin 14200  df-cos 14201  df-pi 14203  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-vma 24103  df-chp 24104
This theorem is referenced by:  pntlemi  24521
  Copyright terms: Public domain W3C validator