MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemi Structured version   Unicode version

Theorem pntlemi 23654
Description: Lemma for pnt 23664. Eliminate some assumptions from pntlemj 23653. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntlem1.K  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntlem1.o  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
Assertion
Ref Expression
pntlemi  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( ( U  -  E )  x.  ( ( ( L  x.  E )  / 
8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Distinct variable groups:    z, C    y, n, z, J    u, n, L, y, z    n, K, y, z    n, M, z    n, O, z    ph, n    n, N, z    R, n, u, y, z    U, n, z    n, W, z    n, X, y, z    n, Y, z   
n, a, u, y, z, E    n, Z, u, z
Allowed substitution hints:    ph( y, z, u, a)    A( y, z, u, n, a)    B( y, z, u, n, a)    C( y, u, n, a)    D( y, z, u, n, a)    R( a)    U( y, u, a)    F( y, z, u, n, a)    J( u, a)    K( u, a)    L( a)    M( y, u, a)    N( y, u, a)    O( y, u, a)    W( y, u, a)    X( u, a)    Y( y, u, a)    Z( y, a)

Proof of Theorem pntlemi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . . 8  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . . . . . . 8  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . . . . . . 8  |-  D  =  ( A  +  1 )
6 pntlem1.f . . . . . . . 8  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . . . . . . 8  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . . . . . . 8  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . . . . . . 8  |-  E  =  ( U  /  D
)
10 pntlem1.k . . . . . . . 8  |-  K  =  ( exp `  ( B  /  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 23645 . . . . . . 7  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1211simp2d 1008 . . . . . 6  |-  ( ph  ->  K  e.  RR+ )
13 elfzoelz 11803 . . . . . 6  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ZZ )
14 rpexpcl 12159 . . . . . 6  |-  ( ( K  e.  RR+  /\  J  e.  ZZ )  ->  ( K ^ J )  e.  RR+ )
1512, 13, 14syl2an 477 . . . . 5  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( K ^ J )  e.  RR+ )
1615rpred 11260 . . . 4  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( K ^ J )  e.  RR )
17 elfzofz 11817 . . . . . 6  |-  ( J  e.  ( M..^ N
)  ->  J  e.  ( M ... N ) )
18 pntlem1.y . . . . . . 7  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
19 pntlem1.x . . . . . . 7  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
20 pntlem1.c . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
21 pntlem1.w . . . . . . 7  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
22 pntlem1.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
23 pntlem1.m . . . . . . 7  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
24 pntlem1.n . . . . . . 7  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24pntlemh 23649 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
2617, 25sylan2 474 . . . . 5  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( X  < 
( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
2726simpld 459 . . . 4  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  X  <  ( K ^ J ) )
2819simpld 459 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
2928adantr 465 . . . . 5  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  X  e.  RR+ )
30 rpxr 11231 . . . . 5  |-  ( X  e.  RR+  ->  X  e. 
RR* )
31 elioopnf 11622 . . . . 5  |-  ( X  e.  RR*  ->  ( ( K ^ J )  e.  ( X (,) +oo )  <->  ( ( K ^ J )  e.  RR  /\  X  < 
( K ^ J
) ) ) )
3229, 30, 313syl 20 . . . 4  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( ( K ^ J )  e.  ( X (,) +oo ) 
<->  ( ( K ^ J )  e.  RR  /\  X  <  ( K ^ J ) ) ) )
3316, 27, 32mpbir2and 920 . . 3  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( K ^ J )  e.  ( X (,) +oo )
)
34 pntlem1.K . . . 4  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
3534adantr 465 . . 3  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
36 breq2 4437 . . . . . . . 8  |-  ( z  =  x  ->  (
y  <  z  <->  y  <  x ) )
37 oveq2 6285 . . . . . . . . 9  |-  ( z  =  x  ->  (
( 1  +  ( L  x.  E ) )  x.  z )  =  ( ( 1  +  ( L  x.  E ) )  x.  x ) )
3837breq1d 4443 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y )  <->  ( (
1  +  ( L  x.  E ) )  x.  x )  < 
( K  x.  y
) ) )
3936, 38anbi12d 710 . . . . . . 7  |-  ( z  =  x  ->  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  <->  ( y  <  x  /\  ( ( 1  +  ( L  x.  E ) )  x.  x )  < 
( K  x.  y
) ) ) )
40 id 22 . . . . . . . . 9  |-  ( z  =  x  ->  z  =  x )
4140, 37oveq12d 6295 . . . . . . . 8  |-  ( z  =  x  ->  (
z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) )  =  ( x [,] ( ( 1  +  ( L  x.  E
) )  x.  x
) ) )
4241raleqdv 3044 . . . . . . 7  |-  ( z  =  x  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E  <->  A. u  e.  ( x [,] (
( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
4339, 42anbi12d 710 . . . . . 6  |-  ( z  =  x  ->  (
( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  <->  ( ( y  <  x  /\  (
( 1  +  ( L  x.  E ) )  x.  x )  <  ( K  x.  y ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
4443cbvrexv 3069 . . . . 5  |-  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  E. x  e.  RR+  ( ( y  <  x  /\  (
( 1  +  ( L  x.  E ) )  x.  x )  <  ( K  x.  y ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
45 breq1 4436 . . . . . . . 8  |-  ( y  =  ( K ^ J )  ->  (
y  <  x  <->  ( K ^ J )  <  x
) )
46 oveq2 6285 . . . . . . . . 9  |-  ( y  =  ( K ^ J )  ->  ( K  x.  y )  =  ( K  x.  ( K ^ J ) ) )
4746breq2d 4445 . . . . . . . 8  |-  ( y  =  ( K ^ J )  ->  (
( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  y )  <->  ( (
1  +  ( L  x.  E ) )  x.  x )  < 
( K  x.  ( K ^ J ) ) ) )
4845, 47anbi12d 710 . . . . . . 7  |-  ( y  =  ( K ^ J )  ->  (
( y  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  y ) )  <->  ( ( K ^ J )  < 
x  /\  ( (
1  +  ( L  x.  E ) )  x.  x )  < 
( K  x.  ( K ^ J ) ) ) ) )
4948anbi1d 704 . . . . . 6  |-  ( y  =  ( K ^ J )  ->  (
( ( y  < 
x  /\  ( (
1  +  ( L  x.  E ) )  x.  x )  < 
( K  x.  y
) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E
) )  x.  x
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  <->  ( ( ( K ^ J )  <  x  /\  (
( 1  +  ( L  x.  E ) )  x.  x )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E
) )  x.  x
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
5049rexbidv 2952 . . . . 5  |-  ( y  =  ( K ^ J )  ->  ( E. x  e.  RR+  (
( y  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  y ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  E. x  e.  RR+  ( ( ( K ^ J )  <  x  /\  (
( 1  +  ( L  x.  E ) )  x.  x )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E
) )  x.  x
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
5144, 50syl5bb 257 . . . 4  |-  ( y  =  ( K ^ J )  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  E. x  e.  RR+  ( ( ( K ^ J )  <  x  /\  (
( 1  +  ( L  x.  E ) )  x.  x )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E
) )  x.  x
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
5251rspcv 3190 . . 3  |-  ( ( K ^ J )  e.  ( X (,) +oo )  ->  ( A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  ->  E. x  e.  RR+  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
5333, 35, 52sylc 60 . 2  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  E. x  e.  RR+  ( ( ( K ^ J )  < 
x  /\  ( (
1  +  ( L  x.  E ) )  x.  x )  < 
( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( x [,] (
( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
542ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  A  e.  RR+ )
553ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  B  e.  RR+ )
564ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  L  e.  ( 0 (,) 1
) )
577ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  U  e.  RR+ )
588ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  U  <_  A )
5918ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  ( Y  e.  RR+  /\  1  <_  Y ) )
6019ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  ( X  e.  RR+  /\  Y  < 
X ) )
6120ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  C  e.  RR+ )
6222ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  Z  e.  ( W [,) +oo )
)
63 pntlem1.U . . . 4  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6463ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  A. z  e.  ( Y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  U )
6534ad2antrr 725 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) )
66 pntlem1.o . . 3  |-  O  =  ( ( ( |_
`  ( Z  / 
( K ^ ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z  / 
( K ^ J
) ) ) )
67 simprl 755 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  x  e.  RR+ )
68 simprr 756 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  ( (
( K ^ J
)  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
69 simplr 754 . . 3  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  J  e.  ( M..^ N ) )
70 eqid 2441 . . 3  |-  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  x ) ) )  +  1 ) ... ( |_ `  ( Z  /  x ) ) )  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  x ) ) )  +  1 ) ... ( |_ `  ( Z  /  x ) ) )
711, 54, 55, 56, 5, 6, 57, 58, 9, 10, 59, 60, 61, 21, 62, 23, 24, 64, 65, 66, 67, 68, 69, 70pntlemj 23653 . 2  |-  ( ( ( ph  /\  J  e.  ( M..^ N ) )  /\  ( x  e.  RR+  /\  (
( ( K ^ J )  <  x  /\  ( ( 1  +  ( L  x.  E
) )  x.  x
)  <  ( K  x.  ( K ^ J
) ) )  /\  A. u  e.  ( x [,] ( ( 1  +  ( L  x.  E ) )  x.  x ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )  ->  ( ( U  -  E )  x.  ( ( ( L  x.  E )  / 
8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
7253, 71rexlimddv 2937 1  |-  ( (
ph  /\  J  e.  ( M..^ N ) )  ->  ( ( U  -  E )  x.  ( ( ( L  x.  E )  / 
8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  (
( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   A.wral 2791   E.wrex 2792   class class class wbr 4433    |-> cmpt 4491   ` cfv 5574  (class class class)co 6277   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495   +oocpnf 9623   RR*cxr 9625    < clt 9626    <_ cle 9627    - cmin 9805    / cdiv 10207   2c2 10586   3c3 10587   4c4 10588   8c8 10592   ZZcz 10865  ;cdc 10979   RR+crp 11224   (,)cioo 11533   [,)cico 11535   [,]cicc 11536   ...cfz 11676  ..^cfzo 11798   |_cfl 11901   ^cexp 12140   sqrcsqrt 13040   abscabs 13041   sum_csu 13482   expce 13670   logclog 22807  ψcchp 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ioo 11537  df-ioc 11538  df-ico 11539  df-icc 11540  df-fz 11677  df-fzo 11799  df-fl 11903  df-mod 11971  df-seq 12082  df-exp 12141  df-fac 12328  df-bc 12355  df-hash 12380  df-shft 12874  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-limsup 13268  df-clim 13285  df-rlim 13286  df-sum 13483  df-ef 13676  df-e 13677  df-sin 13678  df-cos 13679  df-pi 13681  df-dvds 13859  df-gcd 14017  df-prm 14090  df-pc 14233  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-rest 14692  df-topn 14693  df-0g 14711  df-gsum 14712  df-topgen 14713  df-pt 14714  df-prds 14717  df-xrs 14771  df-qtop 14776  df-imas 14777  df-xps 14779  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-mulg 15929  df-cntz 16224  df-cmn 16669  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-cnfld 18289  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lp 19503  df-perf 19504  df-cn 19594  df-cnp 19595  df-haus 19682  df-tx 19929  df-hmeo 20122  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-xms 20689  df-ms 20690  df-tms 20691  df-cncf 21248  df-limc 22136  df-dv 22137  df-log 22809  df-vma 23236  df-chp 23237
This theorem is referenced by:  pntlemf  23655
  Copyright terms: Public domain W3C validator