MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Unicode version

Theorem pntlemh 24165
Description: Lemma for pnt 24180. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
Assertion
Ref Expression
pntlemh  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
21simpld 457 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR+ )
32adantr 463 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  X  e.  RR+ )
43relogcld 23302 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  e.  RR )
5 pntlem1.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
6 pntlem1.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
7 pntlem1.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
8 pntlem1.l . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
9 pntlem1.d . . . . . . . . . . . 12  |-  D  =  ( A  +  1 )
10 pntlem1.f . . . . . . . . . . . 12  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
11 pntlem1.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  RR+ )
12 pntlem1.u2 . . . . . . . . . . . 12  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . . 12  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . . 12  |-  K  =  ( exp `  ( B  /  E ) )
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 24161 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1615simp2d 1010 . . . . . . . . . 10  |-  ( ph  ->  K  e.  RR+ )
1716rpred 11304 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
1815simp3d 1011 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1918simp2d 1010 . . . . . . . . 9  |-  ( ph  ->  1  <  K )
2017, 19rplogcld 23308 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
2120adantr 463 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  RR+ )
224, 21rerpdivcld 11331 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  e.  RR )
23 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
24 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
25 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
26 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
27 pntlem1.m . . . . . . . . . 10  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
28 pntlem1.n . . . . . . . . . 10  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 24164 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
3029simp1d 1009 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3130adantr 463 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  e.  NN )
3231nnred 10591 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  e.  RR )
33 elfzuz 11738 . . . . . . . 8  |-  ( J  e.  ( M ... N )  ->  J  e.  ( ZZ>= `  M )
)
34 eluznn 11197 . . . . . . . 8  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
3530, 33, 34syl2an 475 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  NN )
3635nnred 10591 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  RR )
37 flltp1 11974 . . . . . . . 8  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( ( log `  X )  / 
( log `  K
) )  <  (
( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 ) )
3822, 37syl 17 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  (
( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 ) )
3938, 27syl6breqr 4435 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  M
)
40 elfzle1 11743 . . . . . . 7  |-  ( J  e.  ( M ... N )  ->  M  <_  J )
4140adantl 464 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  <_  J )
4222, 32, 36, 39, 41ltletrd 9776 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  J
)
434, 36, 21ltdivmul2d 11352 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( log `  X
)  /  ( log `  K ) )  < 
J  <->  ( log `  X
)  <  ( J  x.  ( log `  K
) ) ) )
4442, 43mpbid 210 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  <  ( J  x.  ( log `  K ) ) )
4516adantr 463 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  K  e.  RR+ )
46 elfzelz 11742 . . . . . 6  |-  ( J  e.  ( M ... N )  ->  J  e.  ZZ )
4746adantl 464 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  ZZ )
48 relogexp 23275 . . . . 5  |-  ( ( K  e.  RR+  /\  J  e.  ZZ )  ->  ( log `  ( K ^ J ) )  =  ( J  x.  ( log `  K ) ) )
4945, 47, 48syl2anc 659 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( K ^ J
) )  =  ( J  x.  ( log `  K ) ) )
5044, 49breqtrrd 4421 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  <  ( log `  ( K ^ J ) ) )
5145, 47rpexpcld 12377 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( K ^ J )  e.  RR+ )
52 logltb 23279 . . . 4  |-  ( ( X  e.  RR+  /\  ( K ^ J )  e.  RR+ )  ->  ( X  <  ( K ^ J )  <->  ( log `  X )  <  ( log `  ( K ^ J ) ) ) )
533, 51, 52syl2anc 659 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  <->  ( log `  X
)  <  ( log `  ( K ^ J
) ) ) )
5450, 53mpbird 232 . 2  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  X  <  ( K ^ J ) )
5549oveq2d 6294 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  ( log `  ( K ^ J ) ) )  =  ( 2  x.  ( J  x.  ( log `  K ) ) ) )
56 2z 10937 . . . . . . . 8  |-  2  e.  ZZ
57 relogexp 23275 . . . . . . . 8  |-  ( ( ( K ^ J
)  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( ( K ^ J ) ^
2 ) )  =  ( 2  x.  ( log `  ( K ^ J ) ) ) )
5851, 56, 57sylancl 660 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  =  ( 2  x.  ( log `  ( K ^ J
) ) ) )
59 2cnd 10649 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  2  e.  CC )
6036recnd 9652 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  CC )
6145relogcld 23302 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  RR )
6261recnd 9652 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  CC )
6359, 60, 62mulassd 9649 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  x.  ( log `  K
) )  =  ( 2  x.  ( J  x.  ( log `  K
) ) ) )
6455, 58, 633eqtr4d 2453 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  =  ( ( 2  x.  J
)  x.  ( log `  K ) ) )
65 elfzle2 11744 . . . . . . . . . . 11  |-  ( J  e.  ( M ... N )  ->  J  <_  N )
6665adantl 464 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  N )
6766, 28syl6breq 4434 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  ( |_ `  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 24163 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
6968simp1d 1009 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  RR+ )
7069adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  Z  e.  RR+ )
7170relogcld 23302 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  Z )  e.  RR )
7271, 21rerpdivcld 11331 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  Z )  / 
( log `  K
) )  e.  RR )
7372rehalfcld 10826 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
2 )  e.  RR )
74 flge 11979 . . . . . . . . . 10  |-  ( ( ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  RR  /\  J  e.  ZZ )  ->  ( J  <_  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  <->  J  <_  ( |_
`  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
) ) ) )
7573, 47, 74syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( J  <_  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <->  J  <_  ( |_ `  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) ) )
7667, 75mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
77 2re 10646 . . . . . . . . . 10  |-  2  e.  RR
7877a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  2  e.  RR )
79 2pos 10668 . . . . . . . . . 10  |-  0  <  2
8079a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  0  <  2 )
81 lemuldiv2 10465 . . . . . . . . 9  |-  ( ( J  e.  RR  /\  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x.  J )  <_  (
( log `  Z
)  /  ( log `  K ) )  <->  J  <_  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
8236, 72, 78, 80, 81syl112anc 1234 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  <_  ( ( log `  Z )  /  ( log `  K ) )  <-> 
J  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
8376, 82mpbird 232 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  J )  <_ 
( ( log `  Z
)  /  ( log `  K ) ) )
84 remulcl 9607 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  J  e.  RR )  ->  ( 2  x.  J
)  e.  RR )
8577, 36, 84sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  J )  e.  RR )
8685, 71, 21lemuldivd 11349 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( 2  x.  J
)  x.  ( log `  K ) )  <_ 
( log `  Z
)  <->  ( 2  x.  J )  <_  (
( log `  Z
)  /  ( log `  K ) ) ) )
8783, 86mpbird 232 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  x.  ( log `  K
) )  <_  ( log `  Z ) )
8864, 87eqbrtrd 4415 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  <_  ( log `  Z ) )
89 rpexpcl 12229 . . . . . . 7  |-  ( ( ( K ^ J
)  e.  RR+  /\  2  e.  ZZ )  ->  (
( K ^ J
) ^ 2 )  e.  RR+ )
9051, 56, 89sylancl 660 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  e.  RR+ )
9190, 70logled 23306 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( K ^ J
) ^ 2 )  <_  Z  <->  ( log `  ( ( K ^ J ) ^ 2 ) )  <_  ( log `  Z ) ) )
9288, 91mpbird 232 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  <_  Z
)
9370rprege0d 11311 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( Z  e.  RR  /\  0  <_  Z ) )
94 resqrtth 13238 . . . . 5  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
) ^ 2 )  =  Z )
9593, 94syl 17 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( sqr `  Z ) ^
2 )  =  Z )
9692, 95breqtrrd 4421 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) )
9751rprege0d 11311 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J )  e.  RR  /\  0  <_ 
( K ^ J
) ) )
9870rpsqrtcld 13392 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( sqr `  Z )  e.  RR+ )
9998rprege0d 11311 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( sqr `  Z )  e.  RR  /\  0  <_ 
( sqr `  Z
) ) )
100 le2sq 12287 . . . 4  |-  ( ( ( ( K ^ J )  e.  RR  /\  0  <_  ( K ^ J ) )  /\  ( ( sqr `  Z
)  e.  RR  /\  0  <_  ( sqr `  Z
) ) )  -> 
( ( K ^ J )  <_  ( sqr `  Z )  <->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) ) )
10197, 99, 100syl2anc 659 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J )  <_ 
( sqr `  Z
)  <->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) ) )
10296, 101mpbird 232 . 2  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( K ^ J )  <_  ( sqr `  Z ) )
10354, 102jca 530 1  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4395    |-> cmpt 4453   ` cfv 5569  (class class class)co 6278   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527   +oocpnf 9655    < clt 9658    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   2c2 10626   3c3 10627   4c4 10628   ZZcz 10905  ;cdc 11019   ZZ>=cuz 11127   RR+crp 11265   (,)cioo 11582   [,)cico 11584   ...cfz 11726   |_cfl 11964   ^cexp 12210   sqrcsqrt 13215   expce 14006   _eceu 14007   logclog 23234  ψcchp 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-fac 12398  df-bc 12425  df-hash 12453  df-shft 13049  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-limsup 13443  df-clim 13460  df-rlim 13461  df-sum 13658  df-ef 14012  df-e 14013  df-sin 14014  df-cos 14015  df-pi 14017  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lp 19930  df-perf 19931  df-cn 20021  df-cnp 20022  df-haus 20109  df-tx 20355  df-hmeo 20548  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-limc 22562  df-dv 22563  df-log 23236
This theorem is referenced by:  pntlemr  24168  pntlemj  24169  pntlemi  24170  pntlemf  24171
  Copyright terms: Public domain W3C validator