MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Unicode version

Theorem pntlemh 22966
Description: Lemma for pnt 22981. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
Assertion
Ref Expression
pntlemh  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
21simpld 459 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR+ )
32adantr 465 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  X  e.  RR+ )
43relogcld 22190 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  e.  RR )
5 pntlem1.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
6 pntlem1.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
7 pntlem1.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
8 pntlem1.l . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
9 pntlem1.d . . . . . . . . . . . 12  |-  D  =  ( A  +  1 )
10 pntlem1.f . . . . . . . . . . . 12  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
11 pntlem1.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  RR+ )
12 pntlem1.u2 . . . . . . . . . . . 12  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . . 12  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . . 12  |-  K  =  ( exp `  ( B  /  E ) )
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 22962 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1615simp2d 1001 . . . . . . . . . 10  |-  ( ph  ->  K  e.  RR+ )
1716rpred 11130 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
1815simp3d 1002 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1918simp2d 1001 . . . . . . . . 9  |-  ( ph  ->  1  <  K )
2017, 19rplogcld 22196 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
2120adantr 465 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  RR+ )
224, 21rerpdivcld 11157 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  e.  RR )
23 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
24 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
25 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
26 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
27 pntlem1.m . . . . . . . . . 10  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
28 pntlem1.n . . . . . . . . . 10  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 22965 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
3029simp1d 1000 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3130adantr 465 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  e.  NN )
3231nnred 10440 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  e.  RR )
33 elfzuz 11552 . . . . . . . 8  |-  ( J  e.  ( M ... N )  ->  J  e.  ( ZZ>= `  M )
)
34 eluznn 11028 . . . . . . . 8  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
3530, 33, 34syl2an 477 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  NN )
3635nnred 10440 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  RR )
37 flltp1 11753 . . . . . . . 8  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( ( log `  X )  / 
( log `  K
) )  <  (
( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 ) )
3822, 37syl 16 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  (
( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 ) )
3938, 27syl6breqr 4432 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  M
)
40 elfzle1 11557 . . . . . . 7  |-  ( J  e.  ( M ... N )  ->  M  <_  J )
4140adantl 466 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  <_  J )
4222, 32, 36, 39, 41ltletrd 9634 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  J
)
434, 36, 21ltdivmul2d 11178 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( log `  X
)  /  ( log `  K ) )  < 
J  <->  ( log `  X
)  <  ( J  x.  ( log `  K
) ) ) )
4442, 43mpbid 210 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  <  ( J  x.  ( log `  K ) ) )
4516adantr 465 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  K  e.  RR+ )
46 elfzelz 11556 . . . . . 6  |-  ( J  e.  ( M ... N )  ->  J  e.  ZZ )
4746adantl 466 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  ZZ )
48 relogexp 22162 . . . . 5  |-  ( ( K  e.  RR+  /\  J  e.  ZZ )  ->  ( log `  ( K ^ J ) )  =  ( J  x.  ( log `  K ) ) )
4945, 47, 48syl2anc 661 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( K ^ J
) )  =  ( J  x.  ( log `  K ) ) )
5044, 49breqtrrd 4418 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  <  ( log `  ( K ^ J ) ) )
5145, 47rpexpcld 12134 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( K ^ J )  e.  RR+ )
52 logltb 22166 . . . 4  |-  ( ( X  e.  RR+  /\  ( K ^ J )  e.  RR+ )  ->  ( X  <  ( K ^ J )  <->  ( log `  X )  <  ( log `  ( K ^ J ) ) ) )
533, 51, 52syl2anc 661 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  <->  ( log `  X
)  <  ( log `  ( K ^ J
) ) ) )
5450, 53mpbird 232 . 2  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  X  <  ( K ^ J ) )
5549oveq2d 6208 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  ( log `  ( K ^ J ) ) )  =  ( 2  x.  ( J  x.  ( log `  K ) ) ) )
56 2z 10781 . . . . . . . 8  |-  2  e.  ZZ
57 relogexp 22162 . . . . . . . 8  |-  ( ( ( K ^ J
)  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( ( K ^ J ) ^
2 ) )  =  ( 2  x.  ( log `  ( K ^ J ) ) ) )
5851, 56, 57sylancl 662 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  =  ( 2  x.  ( log `  ( K ^ J
) ) ) )
59 2cnd 10497 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  2  e.  CC )
6036recnd 9515 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  CC )
6145relogcld 22190 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  RR )
6261recnd 9515 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  CC )
6359, 60, 62mulassd 9512 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  x.  ( log `  K
) )  =  ( 2  x.  ( J  x.  ( log `  K
) ) ) )
6455, 58, 633eqtr4d 2502 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  =  ( ( 2  x.  J
)  x.  ( log `  K ) ) )
65 elfzle2 11558 . . . . . . . . . . 11  |-  ( J  e.  ( M ... N )  ->  J  <_  N )
6665adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  N )
6766, 28syl6breq 4431 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  ( |_ `  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 22964 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
6968simp1d 1000 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  RR+ )
7069adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  Z  e.  RR+ )
7170relogcld 22190 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  Z )  e.  RR )
7271, 21rerpdivcld 11157 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  Z )  / 
( log `  K
) )  e.  RR )
7372rehalfcld 10674 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
2 )  e.  RR )
74 flge 11758 . . . . . . . . . 10  |-  ( ( ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  RR  /\  J  e.  ZZ )  ->  ( J  <_  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  <->  J  <_  ( |_
`  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
) ) ) )
7573, 47, 74syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( J  <_  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <->  J  <_  ( |_ `  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) ) )
7667, 75mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
77 2re 10494 . . . . . . . . . 10  |-  2  e.  RR
7877a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  2  e.  RR )
79 2pos 10516 . . . . . . . . . 10  |-  0  <  2
8079a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  0  <  2 )
81 lemuldiv2 10315 . . . . . . . . 9  |-  ( ( J  e.  RR  /\  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x.  J )  <_  (
( log `  Z
)  /  ( log `  K ) )  <->  J  <_  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
8236, 72, 78, 80, 81syl112anc 1223 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  <_  ( ( log `  Z )  /  ( log `  K ) )  <-> 
J  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
8376, 82mpbird 232 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  J )  <_ 
( ( log `  Z
)  /  ( log `  K ) ) )
84 remulcl 9470 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  J  e.  RR )  ->  ( 2  x.  J
)  e.  RR )
8577, 36, 84sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  J )  e.  RR )
8685, 71, 21lemuldivd 11175 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( 2  x.  J
)  x.  ( log `  K ) )  <_ 
( log `  Z
)  <->  ( 2  x.  J )  <_  (
( log `  Z
)  /  ( log `  K ) ) ) )
8783, 86mpbird 232 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  x.  ( log `  K
) )  <_  ( log `  Z ) )
8864, 87eqbrtrd 4412 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  <_  ( log `  Z ) )
89 rpexpcl 11987 . . . . . . 7  |-  ( ( ( K ^ J
)  e.  RR+  /\  2  e.  ZZ )  ->  (
( K ^ J
) ^ 2 )  e.  RR+ )
9051, 56, 89sylancl 662 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  e.  RR+ )
9190, 70logled 22194 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( K ^ J
) ^ 2 )  <_  Z  <->  ( log `  ( ( K ^ J ) ^ 2 ) )  <_  ( log `  Z ) ) )
9288, 91mpbird 232 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  <_  Z
)
9370rprege0d 11137 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( Z  e.  RR  /\  0  <_  Z ) )
94 resqrth 12849 . . . . 5  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
) ^ 2 )  =  Z )
9593, 94syl 16 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( sqr `  Z ) ^
2 )  =  Z )
9692, 95breqtrrd 4418 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) )
9751rprege0d 11137 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J )  e.  RR  /\  0  <_ 
( K ^ J
) ) )
9870rpsqrcld 13002 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( sqr `  Z )  e.  RR+ )
9998rprege0d 11137 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( sqr `  Z )  e.  RR  /\  0  <_ 
( sqr `  Z
) ) )
100 le2sq 12043 . . . 4  |-  ( ( ( ( K ^ J )  e.  RR  /\  0  <_  ( K ^ J ) )  /\  ( ( sqr `  Z
)  e.  RR  /\  0  <_  ( sqr `  Z
) ) )  -> 
( ( K ^ J )  <_  ( sqr `  Z )  <->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) ) )
10197, 99, 100syl2anc 661 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J )  <_ 
( sqr `  Z
)  <->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) ) )
10296, 101mpbird 232 . 2  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( K ^ J )  <_  ( sqr `  Z ) )
10354, 102jca 532 1  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4392    |-> cmpt 4450   ` cfv 5518  (class class class)co 6192   RRcr 9384   0cc0 9385   1c1 9386    + caddc 9388    x. cmul 9390   +oocpnf 9518    < clt 9521    <_ cle 9522    - cmin 9698    / cdiv 10096   NNcn 10425   2c2 10474   3c3 10475   4c4 10476   ZZcz 10749  ;cdc 10858   ZZ>=cuz 10964   RR+crp 11094   (,)cioo 11403   [,)cico 11405   ...cfz 11540   |_cfl 11743   ^cexp 11968   sqrcsqr 12826   expce 13451   _eceu 13452   logclog 22124  ψcchp 22548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463  ax-addf 9464  ax-mulf 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-of 6422  df-om 6579  df-1st 6679  df-2nd 6680  df-supp 6793  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-ixp 7366  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-fsupp 7724  df-fi 7764  df-sup 7794  df-oi 7827  df-card 8212  df-cda 8440  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-4 10485  df-5 10486  df-6 10487  df-7 10488  df-8 10489  df-9 10490  df-10 10491  df-n0 10683  df-z 10750  df-dec 10859  df-uz 10965  df-q 11057  df-rp 11095  df-xneg 11192  df-xadd 11193  df-xmul 11194  df-ioo 11407  df-ioc 11408  df-ico 11409  df-icc 11410  df-fz 11541  df-fzo 11652  df-fl 11745  df-mod 11812  df-seq 11910  df-exp 11969  df-fac 12155  df-bc 12182  df-hash 12207  df-shft 12660  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-limsup 13053  df-clim 13070  df-rlim 13071  df-sum 13268  df-ef 13457  df-e 13458  df-sin 13459  df-cos 13460  df-pi 13462  df-struct 14280  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-starv 14357  df-sca 14358  df-vsca 14359  df-ip 14360  df-tset 14361  df-ple 14362  df-ds 14364  df-unif 14365  df-hom 14366  df-cco 14367  df-rest 14465  df-topn 14466  df-0g 14484  df-gsum 14485  df-topgen 14486  df-pt 14487  df-prds 14490  df-xrs 14544  df-qtop 14549  df-imas 14550  df-xps 14552  df-mre 14628  df-mrc 14629  df-acs 14631  df-mnd 15519  df-submnd 15569  df-mulg 15652  df-cntz 15939  df-cmn 16385  df-psmet 17920  df-xmet 17921  df-met 17922  df-bl 17923  df-mopn 17924  df-fbas 17925  df-fg 17926  df-cnfld 17930  df-top 18621  df-bases 18623  df-topon 18624  df-topsp 18625  df-cld 18741  df-ntr 18742  df-cls 18743  df-nei 18820  df-lp 18858  df-perf 18859  df-cn 18949  df-cnp 18950  df-haus 19037  df-tx 19253  df-hmeo 19446  df-fil 19537  df-fm 19629  df-flim 19630  df-flf 19631  df-xms 20013  df-ms 20014  df-tms 20015  df-cncf 20572  df-limc 21459  df-dv 21460  df-log 22126
This theorem is referenced by:  pntlemr  22969  pntlemj  22970  pntlemi  22971  pntlemf  22972
  Copyright terms: Public domain W3C validator