MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Visualization version   Unicode version

Theorem pntlemg 24436
Description: Lemma for pnt 24452. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  M is j^* and  N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
Assertion
Ref Expression
pntlemg  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
2 pntlem1.x . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
32simpld 461 . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
43rpred 11341 . . . . . . 7  |-  ( ph  ->  X  e.  RR )
5 1red 9658 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
6 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
76simpld 461 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR+ )
87rpred 11341 . . . . . . . 8  |-  ( ph  ->  Y  e.  RR )
96simprd 465 . . . . . . . 8  |-  ( ph  ->  1  <_  Y )
102simprd 465 . . . . . . . 8  |-  ( ph  ->  Y  <  X )
115, 8, 4, 9, 10lelttrd 9793 . . . . . . 7  |-  ( ph  ->  1  <  X )
124, 11rplogcld 23578 . . . . . 6  |-  ( ph  ->  ( log `  X
)  e.  RR+ )
13 pntlem1.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
14 pntlem1.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
15 pntlem1.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR+ )
16 pntlem1.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
17 pntlem1.d . . . . . . . . . 10  |-  D  =  ( A  +  1 )
18 pntlem1.f . . . . . . . . . 10  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
19 pntlem1.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  RR+ )
20 pntlem1.u2 . . . . . . . . . 10  |-  ( ph  ->  U  <_  A )
21 pntlem1.e . . . . . . . . . 10  |-  E  =  ( U  /  D
)
22 pntlem1.k . . . . . . . . . 10  |-  K  =  ( exp `  ( B  /  E ) )
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 24433 . . . . . . . . 9  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
2423simp2d 1021 . . . . . . . 8  |-  ( ph  ->  K  e.  RR+ )
2524rpred 11341 . . . . . . 7  |-  ( ph  ->  K  e.  RR )
2623simp3d 1022 . . . . . . . 8  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
2726simp2d 1021 . . . . . . 7  |-  ( ph  ->  1  <  K )
2825, 27rplogcld 23578 . . . . . 6  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
2912, 28rpdivcld 11358 . . . . 5  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR+ )
3029rprege0d 11348 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  e.  RR  /\  0  <_  ( ( log `  X
)  /  ( log `  K ) ) ) )
31 flge0nn0 12054 . . . 4  |-  ( ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  /\  0  <_ 
( ( log `  X
)  /  ( log `  K ) ) )  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  e.  NN0 )
32 nn0p1nn 10909 . . . 4  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  e. 
NN0  ->  ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  e.  NN )
3330, 31, 323syl 18 . . 3  |-  ( ph  ->  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )  e.  NN )
341, 33syl5eqel 2533 . 2  |-  ( ph  ->  M  e.  NN )
3534nnzd 11039 . . 3  |-  ( ph  ->  M  e.  ZZ )
36 pntlem1.n . . . 4  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
37 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
38 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
39 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 24435 . . . . . . . . 9  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
4140simp1d 1020 . . . . . . . 8  |-  ( ph  ->  Z  e.  RR+ )
4241relogcld 23572 . . . . . . 7  |-  ( ph  ->  ( log `  Z
)  e.  RR )
4342, 28rerpdivcld 11369 . . . . . 6  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR )
4443rehalfcld 10859 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  RR )
4544flcld 12034 . . . 4  |-  ( ph  ->  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )  e.  ZZ )
4636, 45syl5eqel 2533 . . 3  |-  ( ph  ->  N  e.  ZZ )
47 0red 9644 . . . . 5  |-  ( ph  ->  0  e.  RR )
48 4nn 10769 . . . . . 6  |-  4  e.  NN
49 nndivre 10645 . . . . . 6  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  4  e.  NN )  ->  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  e.  RR )
5043, 48, 49sylancl 668 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR )
5146zred 11040 . . . . . 6  |-  ( ph  ->  N  e.  RR )
5234nnred 10624 . . . . . 6  |-  ( ph  ->  M  e.  RR )
5351, 52resubcld 10047 . . . . 5  |-  ( ph  ->  ( N  -  M
)  e.  RR )
5441rpred 11341 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR )
5540simp2d 1021 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
5655simp1d 1020 . . . . . . . . 9  |-  ( ph  ->  1  <  Z )
5754, 56rplogcld 23578 . . . . . . . 8  |-  ( ph  ->  ( log `  Z
)  e.  RR+ )
5857, 28rpdivcld 11358 . . . . . . 7  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR+ )
59 4re 10686 . . . . . . . 8  |-  4  e.  RR
60 4pos 10705 . . . . . . . 8  |-  0  <  4
6159, 60elrpii 11305 . . . . . . 7  |-  4  e.  RR+
62 rpdivcl 11325 . . . . . . 7  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR+  /\  4  e.  RR+ )  ->  ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  e.  RR+ )
6358, 61, 62sylancl 668 . . . . . 6  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR+ )
6463rpge0d 11345 . . . . 5  |-  ( ph  ->  0  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
6550recnd 9669 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  CC )
6634nncnd 10625 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
67 1cnd 9659 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
6865, 66, 67addassd 9665 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  +  1 )  =  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  ( M  +  1 ) ) )
6952, 5readdcld 9670 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  RR )
7050, 69readdcld 9670 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  e.  RR )
71 peano2re 9806 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
7251, 71syl 17 . . . . . . . . 9  |-  ( ph  ->  ( N  +  1 )  e.  RR )
7329rpred 11341 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR )
74 2re 10679 . . . . . . . . . . . . . 14  |-  2  e.  RR
7574a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  RR )
7673, 75readdcld 9670 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  e.  RR )
77 reflcl 12032 . . . . . . . . . . . . . . . . 17  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  e.  RR )
7873, 77syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  e.  RR )
7978recnd 9669 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  e.  CC )
8079, 67, 67addassd 9665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  +  1 )  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  ( 1  +  1 ) ) )
811oveq1i 6300 . . . . . . . . . . . . . 14  |-  ( M  +  1 )  =  ( ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  +  1 )
82 df-2 10668 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
8382oveq2i 6301 . . . . . . . . . . . . . 14  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  2 )  =  ( ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  ( 1  +  1 ) )
8480, 81, 833eqtr4g 2510 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  +  1 )  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  2 ) )
85 flle 12035 . . . . . . . . . . . . . . 15  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  <_  ( ( log `  X )  /  ( log `  K ) ) )
8673, 85syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  <_  ( ( log `  X )  /  ( log `  K ) ) )
8778, 73, 75, 86leadd1dd 10227 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  2 )  <_ 
( ( ( log `  X )  /  ( log `  K ) )  +  2 ) )
8884, 87eqbrtrd 4423 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  +  1 )  <_  ( (
( log `  X
)  /  ( log `  K ) )  +  2 ) )
8940simp3d 1022 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 4  / 
( L  x.  E
) )  <_  ( sqr `  Z )  /\  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  /\  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) )
9089simp2d 1021 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
9169, 76, 50, 88, 90letrd 9792 . . . . . . . . . . 11  |-  ( ph  ->  ( M  +  1 )  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
9269, 50, 50, 91leadd2dd 10228 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
9343recnd 9669 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  CC )
94 2cnd 10682 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
95 2ne0 10702 . . . . . . . . . . . . . . 15  |-  2  =/=  0
9695a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  =/=  0 )
9793, 94, 94, 96, 96divdiv1d 10414 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  /  2 )  =  ( ( ( log `  Z )  /  ( log `  K
) )  /  (
2  x.  2 ) ) )
98 2t2e4 10759 . . . . . . . . . . . . . 14  |-  ( 2  x.  2 )  =  4
9998oveq2i 6301 . . . . . . . . . . . . 13  |-  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
( 2  x.  2 ) )  =  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )
10097, 99syl6eq 2501 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  /  2 )  =  ( ( ( log `  Z )  /  ( log `  K
) )  /  4
) )
101100oveq2d 6306 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  / 
2 ) )  =  ( 2  x.  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
10244recnd 9669 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  CC )
103102, 94, 96divcan2d 10385 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  / 
2 ) )  =  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )
104652timesd 10855 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) )  =  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
105101, 103, 1043eqtr3d 2493 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  =  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
10692, 105breqtrrd 4429 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
) )
107 fllep1 12037 . . . . . . . . . . 11  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 )  e.  RR  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 ) )
10844, 107syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 ) )
10936oveq1i 6300 . . . . . . . . . 10  |-  ( N  +  1 )  =  ( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 )
110108, 109syl6breqr 4443 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( N  +  1 ) )
11170, 44, 72, 106, 110letrd 9792 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( N  + 
1 ) )
11268, 111eqbrtrd 4423 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  +  1 )  <_  ( N  + 
1 ) )
11350, 52readdcld 9670 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  e.  RR )
114113, 51, 5leadd1d 10207 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  <_  N  <->  ( (
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  +  M )  +  1 )  <_  ( N  +  1 ) ) )
115112, 114mpbird 236 . . . . . 6  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  <_  N )
116 leaddsub 10090 . . . . . . 7  |-  ( ( ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  <_  N  <->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
11750, 52, 51, 116syl3anc 1268 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  <_  N  <->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
118115, 117mpbid 214 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  <_ 
( N  -  M
) )
11947, 50, 53, 64, 118letrd 9792 . . . 4  |-  ( ph  ->  0  <_  ( N  -  M ) )
12051, 52subge0d 10203 . . . 4  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
121119, 120mpbid 214 . . 3  |-  ( ph  ->  M  <_  N )
122 eluz2 11165 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
12335, 46, 121, 122syl3anbrc 1192 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
12434, 123, 1183jca 1188 1  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   class class class wbr 4402    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544   +oocpnf 9672    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   3c3 10660   4c4 10661   NN0cn0 10869   ZZcz 10937  ;cdc 11051   ZZ>=cuz 11159   RR+crp 11302   (,)cioo 11635   [,)cico 11637   |_cfl 12026   ^cexp 12272   sqrcsqrt 13296   expce 14114   _eceu 14115   logclog 23504  ψcchp 24019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-e 14122  df-sin 14123  df-cos 14124  df-pi 14126  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506
This theorem is referenced by:  pntlemh  24437  pntlemq  24439  pntlemr  24440  pntlemj  24441  pntlemf  24443
  Copyright terms: Public domain W3C validator