MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Unicode version

Theorem pntlemg 22806
Description: Lemma for pnt 22822. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  M is j^* and  N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
Assertion
Ref Expression
pntlemg  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
2 pntlem1.x . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
32simpld 456 . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
43rpred 11023 . . . . . . 7  |-  ( ph  ->  X  e.  RR )
5 1red 9397 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
6 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
76simpld 456 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR+ )
87rpred 11023 . . . . . . . 8  |-  ( ph  ->  Y  e.  RR )
96simprd 460 . . . . . . . 8  |-  ( ph  ->  1  <_  Y )
102simprd 460 . . . . . . . 8  |-  ( ph  ->  Y  <  X )
115, 8, 4, 9, 10lelttrd 9525 . . . . . . 7  |-  ( ph  ->  1  <  X )
124, 11rplogcld 22037 . . . . . 6  |-  ( ph  ->  ( log `  X
)  e.  RR+ )
13 pntlem1.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
14 pntlem1.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
15 pntlem1.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR+ )
16 pntlem1.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
17 pntlem1.d . . . . . . . . . 10  |-  D  =  ( A  +  1 )
18 pntlem1.f . . . . . . . . . 10  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
19 pntlem1.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  RR+ )
20 pntlem1.u2 . . . . . . . . . 10  |-  ( ph  ->  U  <_  A )
21 pntlem1.e . . . . . . . . . 10  |-  E  =  ( U  /  D
)
22 pntlem1.k . . . . . . . . . 10  |-  K  =  ( exp `  ( B  /  E ) )
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 22803 . . . . . . . . 9  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
2423simp2d 996 . . . . . . . 8  |-  ( ph  ->  K  e.  RR+ )
2524rpred 11023 . . . . . . 7  |-  ( ph  ->  K  e.  RR )
2623simp3d 997 . . . . . . . 8  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
2726simp2d 996 . . . . . . 7  |-  ( ph  ->  1  <  K )
2825, 27rplogcld 22037 . . . . . 6  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
2912, 28rpdivcld 11040 . . . . 5  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR+ )
3029rprege0d 11030 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  e.  RR  /\  0  <_  ( ( log `  X
)  /  ( log `  K ) ) ) )
31 flge0nn0 11662 . . . 4  |-  ( ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  /\  0  <_ 
( ( log `  X
)  /  ( log `  K ) ) )  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  e.  NN0 )
32 nn0p1nn 10615 . . . 4  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  e. 
NN0  ->  ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  e.  NN )
3330, 31, 323syl 20 . . 3  |-  ( ph  ->  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )  e.  NN )
341, 33syl5eqel 2525 . 2  |-  ( ph  ->  M  e.  NN )
3534nnzd 10742 . . 3  |-  ( ph  ->  M  e.  ZZ )
36 pntlem1.n . . . 4  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
37 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
38 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
39 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 22805 . . . . . . . . 9  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
4140simp1d 995 . . . . . . . 8  |-  ( ph  ->  Z  e.  RR+ )
4241relogcld 22031 . . . . . . 7  |-  ( ph  ->  ( log `  Z
)  e.  RR )
4342, 28rerpdivcld 11050 . . . . . 6  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR )
4443rehalfcld 10567 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  RR )
4544flcld 11644 . . . 4  |-  ( ph  ->  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )  e.  ZZ )
4636, 45syl5eqel 2525 . . 3  |-  ( ph  ->  N  e.  ZZ )
47 0red 9383 . . . . 5  |-  ( ph  ->  0  e.  RR )
48 4nn 10477 . . . . . 6  |-  4  e.  NN
49 nndivre 10353 . . . . . 6  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  4  e.  NN )  ->  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  e.  RR )
5043, 48, 49sylancl 657 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR )
5146zred 10743 . . . . . 6  |-  ( ph  ->  N  e.  RR )
5234nnred 10333 . . . . . 6  |-  ( ph  ->  M  e.  RR )
5351, 52resubcld 9772 . . . . 5  |-  ( ph  ->  ( N  -  M
)  e.  RR )
5441rpred 11023 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR )
5540simp2d 996 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
5655simp1d 995 . . . . . . . . 9  |-  ( ph  ->  1  <  Z )
5754, 56rplogcld 22037 . . . . . . . 8  |-  ( ph  ->  ( log `  Z
)  e.  RR+ )
5857, 28rpdivcld 11040 . . . . . . 7  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR+ )
59 4re 10394 . . . . . . . 8  |-  4  e.  RR
60 4pos 10413 . . . . . . . 8  |-  0  <  4
6159, 60elrpii 10990 . . . . . . 7  |-  4  e.  RR+
62 rpdivcl 11009 . . . . . . 7  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR+  /\  4  e.  RR+ )  ->  ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  e.  RR+ )
6358, 61, 62sylancl 657 . . . . . 6  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR+ )
6463rpge0d 11027 . . . . 5  |-  ( ph  ->  0  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
6550recnd 9408 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  CC )
6634nncnd 10334 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
67 1cnd 9398 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
6865, 66, 67addassd 9404 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  +  1 )  =  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  ( M  +  1 ) ) )
6952, 5readdcld 9409 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  RR )
7050, 69readdcld 9409 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  e.  RR )
71 peano2re 9538 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
7251, 71syl 16 . . . . . . . . 9  |-  ( ph  ->  ( N  +  1 )  e.  RR )
7329rpred 11023 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR )
74 2re 10387 . . . . . . . . . . . . . 14  |-  2  e.  RR
7574a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  RR )
7673, 75readdcld 9409 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  e.  RR )
77 reflcl 11642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  e.  RR )
7873, 77syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  e.  RR )
7978recnd 9408 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  e.  CC )
8079, 67, 67addassd 9404 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  +  1 )  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  ( 1  +  1 ) ) )
811oveq1i 6100 . . . . . . . . . . . . . 14  |-  ( M  +  1 )  =  ( ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  +  1 )
82 df-2 10376 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
8382oveq2i 6101 . . . . . . . . . . . . . 14  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  2 )  =  ( ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  ( 1  +  1 ) )
8480, 81, 833eqtr4g 2498 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  +  1 )  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  2 ) )
85 flle 11645 . . . . . . . . . . . . . . 15  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  <_  ( ( log `  X )  /  ( log `  K ) ) )
8673, 85syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  <_  ( ( log `  X )  /  ( log `  K ) ) )
8778, 73, 75, 86leadd1dd 9949 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  2 )  <_ 
( ( ( log `  X )  /  ( log `  K ) )  +  2 ) )
8884, 87eqbrtrd 4309 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  +  1 )  <_  ( (
( log `  X
)  /  ( log `  K ) )  +  2 ) )
8940simp3d 997 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 4  / 
( L  x.  E
) )  <_  ( sqr `  Z )  /\  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  /\  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) )
9089simp2d 996 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
9169, 76, 50, 88, 90letrd 9524 . . . . . . . . . . 11  |-  ( ph  ->  ( M  +  1 )  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
9269, 50, 50, 91leadd2dd 9950 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
9343recnd 9408 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  CC )
94 2cnd 10390 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
95 2ne0 10410 . . . . . . . . . . . . . . 15  |-  2  =/=  0
9695a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  =/=  0 )
9793, 94, 94, 96, 96divdiv1d 10134 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  /  2 )  =  ( ( ( log `  Z )  /  ( log `  K
) )  /  (
2  x.  2 ) ) )
98 2t2e4 10467 . . . . . . . . . . . . . 14  |-  ( 2  x.  2 )  =  4
9998oveq2i 6101 . . . . . . . . . . . . 13  |-  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
( 2  x.  2 ) )  =  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )
10097, 99syl6eq 2489 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  /  2 )  =  ( ( ( log `  Z )  /  ( log `  K
) )  /  4
) )
101100oveq2d 6106 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  / 
2 ) )  =  ( 2  x.  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
10244recnd 9408 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  CC )
103102, 94, 96divcan2d 10105 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  / 
2 ) )  =  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )
104652timesd 10563 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) )  =  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
105101, 103, 1043eqtr3d 2481 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  =  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
10692, 105breqtrrd 4315 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
) )
107 fllep1 11647 . . . . . . . . . . 11  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 )  e.  RR  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 ) )
10844, 107syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 ) )
10936oveq1i 6100 . . . . . . . . . 10  |-  ( N  +  1 )  =  ( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 )
110108, 109syl6breqr 4329 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( N  +  1 ) )
11170, 44, 72, 106, 110letrd 9524 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( N  + 
1 ) )
11268, 111eqbrtrd 4309 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  +  1 )  <_  ( N  + 
1 ) )
11350, 52readdcld 9409 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  e.  RR )
114113, 51, 5leadd1d 9929 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  <_  N  <->  ( (
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  +  M )  +  1 )  <_  ( N  +  1 ) ) )
115112, 114mpbird 232 . . . . . 6  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  <_  N )
116 leaddsub 9811 . . . . . . 7  |-  ( ( ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  <_  N  <->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
11750, 52, 51, 116syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  <_  N  <->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
118115, 117mpbid 210 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  <_ 
( N  -  M
) )
11947, 50, 53, 64, 118letrd 9524 . . . 4  |-  ( ph  ->  0  <_  ( N  -  M ) )
12051, 52subge0d 9925 . . . 4  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
121119, 120mpbid 210 . . 3  |-  ( ph  ->  M  <_  N )
122 eluz2 10863 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
12335, 46, 121, 122syl3anbrc 1167 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
12434, 123, 1183jca 1163 1  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283   +oocpnf 9411    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   2c2 10367   3c3 10368   4c4 10369   NN0cn0 10575   ZZcz 10642  ;cdc 10751   ZZ>=cuz 10857   RR+crp 10987   (,)cioo 11296   [,)cico 11298   |_cfl 11636   ^cexp 11861   sqrcsqr 12718   expce 13343   _eceu 13344   logclog 21965  ψcchp 22389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-e 13350  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967
This theorem is referenced by:  pntlemh  22807  pntlemq  22809  pntlemr  22810  pntlemj  22811  pntlemf  22813
  Copyright terms: Public domain W3C validator