MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Unicode version

Theorem pntlemg 21245
Description: Lemma for pnt 21261. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  M is j^* and  N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
Assertion
Ref Expression
pntlemg  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
2 pntlem1.x . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
32simpld 446 . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
43rpred 10604 . . . . . . 7  |-  ( ph  ->  X  e.  RR )
5 1re 9046 . . . . . . . . 9  |-  1  e.  RR
65a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
7 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
87simpld 446 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR+ )
98rpred 10604 . . . . . . . 8  |-  ( ph  ->  Y  e.  RR )
107simprd 450 . . . . . . . 8  |-  ( ph  ->  1  <_  Y )
112simprd 450 . . . . . . . 8  |-  ( ph  ->  Y  <  X )
126, 9, 4, 10, 11lelttrd 9184 . . . . . . 7  |-  ( ph  ->  1  <  X )
134, 12rplogcld 20477 . . . . . 6  |-  ( ph  ->  ( log `  X
)  e.  RR+ )
14 pntlem1.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
15 pntlem1.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
16 pntlem1.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR+ )
17 pntlem1.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
18 pntlem1.d . . . . . . . . . 10  |-  D  =  ( A  +  1 )
19 pntlem1.f . . . . . . . . . 10  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
20 pntlem1.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  RR+ )
21 pntlem1.u2 . . . . . . . . . 10  |-  ( ph  ->  U  <_  A )
22 pntlem1.e . . . . . . . . . 10  |-  E  =  ( U  /  D
)
23 pntlem1.k . . . . . . . . . 10  |-  K  =  ( exp `  ( B  /  E ) )
2414, 15, 16, 17, 18, 19, 20, 21, 22, 23pntlemc 21242 . . . . . . . . 9  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
2524simp2d 970 . . . . . . . 8  |-  ( ph  ->  K  e.  RR+ )
2625rpred 10604 . . . . . . 7  |-  ( ph  ->  K  e.  RR )
2724simp3d 971 . . . . . . . 8  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
2827simp2d 970 . . . . . . 7  |-  ( ph  ->  1  <  K )
2926, 28rplogcld 20477 . . . . . 6  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
3013, 29rpdivcld 10621 . . . . 5  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR+ )
3130rprege0d 10611 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  e.  RR  /\  0  <_  ( ( log `  X
)  /  ( log `  K ) ) ) )
32 flge0nn0 11180 . . . 4  |-  ( ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  /\  0  <_ 
( ( log `  X
)  /  ( log `  K ) ) )  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  e.  NN0 )
33 nn0p1nn 10215 . . . 4  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  e. 
NN0  ->  ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  e.  NN )
3431, 32, 333syl 19 . . 3  |-  ( ph  ->  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )  e.  NN )
351, 34syl5eqel 2488 . 2  |-  ( ph  ->  M  e.  NN )
3635nnzd 10330 . . 3  |-  ( ph  ->  M  e.  ZZ )
37 pntlem1.n . . . 4  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
38 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
39 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
40 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
4114, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7, 2, 38, 39, 40pntlemb 21244 . . . . . . . . 9  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
4241simp1d 969 . . . . . . . 8  |-  ( ph  ->  Z  e.  RR+ )
4342relogcld 20471 . . . . . . 7  |-  ( ph  ->  ( log `  Z
)  e.  RR )
4443, 29rerpdivcld 10631 . . . . . 6  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR )
4544rehalfcld 10170 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  RR )
4645flcld 11162 . . . 4  |-  ( ph  ->  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )  e.  ZZ )
4737, 46syl5eqel 2488 . . 3  |-  ( ph  ->  N  e.  ZZ )
48 0re 9047 . . . . . 6  |-  0  e.  RR
4948a1i 11 . . . . 5  |-  ( ph  ->  0  e.  RR )
50 4nn 10091 . . . . . 6  |-  4  e.  NN
51 nndivre 9991 . . . . . 6  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  4  e.  NN )  ->  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  e.  RR )
5244, 50, 51sylancl 644 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR )
5347zred 10331 . . . . . 6  |-  ( ph  ->  N  e.  RR )
5435nnred 9971 . . . . . 6  |-  ( ph  ->  M  e.  RR )
5553, 54resubcld 9421 . . . . 5  |-  ( ph  ->  ( N  -  M
)  e.  RR )
5642rpred 10604 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR )
5741simp2d 970 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
5857simp1d 969 . . . . . . . . 9  |-  ( ph  ->  1  <  Z )
5956, 58rplogcld 20477 . . . . . . . 8  |-  ( ph  ->  ( log `  Z
)  e.  RR+ )
6059, 29rpdivcld 10621 . . . . . . 7  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR+ )
61 4re 10029 . . . . . . . 8  |-  4  e.  RR
62 4pos 10042 . . . . . . . 8  |-  0  <  4
6361, 62elrpii 10571 . . . . . . 7  |-  4  e.  RR+
64 rpdivcl 10590 . . . . . . 7  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR+  /\  4  e.  RR+ )  ->  ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  e.  RR+ )
6560, 63, 64sylancl 644 . . . . . 6  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR+ )
6665rpge0d 10608 . . . . 5  |-  ( ph  ->  0  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
6752recnd 9070 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  CC )
6835nncnd 9972 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
69 ax-1cn 9004 . . . . . . . . . 10  |-  1  e.  CC
7069a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
7167, 68, 70addassd 9066 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  +  1 )  =  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  ( M  +  1 ) ) )
7254, 6readdcld 9071 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  RR )
7352, 72readdcld 9071 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  e.  RR )
74 peano2re 9195 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
7553, 74syl 16 . . . . . . . . 9  |-  ( ph  ->  ( N  +  1 )  e.  RR )
7630rpred 10604 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR )
77 2re 10025 . . . . . . . . . . . . . 14  |-  2  e.  RR
7877a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  RR )
7976, 78readdcld 9071 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  e.  RR )
80 reflcl 11160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  e.  RR )
8176, 80syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  e.  RR )
8281recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  e.  CC )
8382, 70, 70addassd 9066 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  +  1 )  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  ( 1  +  1 ) ) )
841oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( M  +  1 )  =  ( ( ( |_
`  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )  +  1 )
85 df-2 10014 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
8685oveq2i 6051 . . . . . . . . . . . . . 14  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  2 )  =  ( ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  ( 1  +  1 ) )
8783, 84, 863eqtr4g 2461 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  +  1 )  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  2 ) )
88 flle 11163 . . . . . . . . . . . . . . 15  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  <_  ( ( log `  X )  /  ( log `  K ) ) )
8976, 88syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  <_  ( ( log `  X )  /  ( log `  K ) ) )
9081, 76, 78, 89leadd1dd 9596 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  2 )  <_ 
( ( ( log `  X )  /  ( log `  K ) )  +  2 ) )
9187, 90eqbrtrd 4192 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  +  1 )  <_  ( (
( log `  X
)  /  ( log `  K ) )  +  2 ) )
9241simp3d 971 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 4  / 
( L  x.  E
) )  <_  ( sqr `  Z )  /\  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  /\  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) )
9392simp2d 970 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
9472, 79, 52, 91, 93letrd 9183 . . . . . . . . . . 11  |-  ( ph  ->  ( M  +  1 )  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
9572, 52, 52, 94leadd2dd 9597 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
9644recnd 9070 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  CC )
97 2cn 10026 . . . . . . . . . . . . . . 15  |-  2  e.  CC
9897a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
99 2ne0 10039 . . . . . . . . . . . . . . 15  |-  2  =/=  0
10099a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  =/=  0 )
10196, 98, 98, 100, 100divdiv1d 9777 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  /  2 )  =  ( ( ( log `  Z )  /  ( log `  K
) )  /  (
2  x.  2 ) ) )
102 2t2e4 10083 . . . . . . . . . . . . . 14  |-  ( 2  x.  2 )  =  4
103102oveq2i 6051 . . . . . . . . . . . . 13  |-  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
( 2  x.  2 ) )  =  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )
104101, 103syl6eq 2452 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  /  2 )  =  ( ( ( log `  Z )  /  ( log `  K
) )  /  4
) )
105104oveq2d 6056 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  / 
2 ) )  =  ( 2  x.  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
10645recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  CC )
107106, 98, 100divcan2d 9748 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  / 
2 ) )  =  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )
108672timesd 10166 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) )  =  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
109105, 107, 1083eqtr3d 2444 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  =  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) ) )
11095, 109breqtrrd 4198 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
) )
111 fllep1 11165 . . . . . . . . . . 11  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 )  e.  RR  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 ) )
11245, 111syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 ) )
11337oveq1i 6050 . . . . . . . . . 10  |-  ( N  +  1 )  =  ( ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 ) )  +  1 )
114112, 113syl6breqr 4212 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <_ 
( N  +  1 ) )
11573, 45, 75, 110, 114letrd 9183 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  ( M  +  1 ) )  <_  ( N  + 
1 ) )
11671, 115eqbrtrd 4192 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  +  1 )  <_  ( N  + 
1 ) )
11752, 54readdcld 9071 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  e.  RR )
118117, 53, 6leadd1d 9576 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  <_  N  <->  ( (
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  +  M )  +  1 )  <_  ( N  +  1 ) ) )
119116, 118mpbird 224 . . . . . 6  |-  ( ph  ->  ( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  <_  N )
120 leaddsub 9460 . . . . . . 7  |-  ( ( ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( ( ( ( log `  Z )  /  ( log `  K
) )  /  4
)  +  M )  <_  N  <->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
12152, 54, 53, 120syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  +  M
)  <_  N  <->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
122119, 121mpbid 202 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  <_ 
( N  -  M
) )
12349, 52, 55, 66, 122letrd 9183 . . . 4  |-  ( ph  ->  0  <_  ( N  -  M ) )
12453, 54subge0d 9572 . . . 4  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
125123, 124mpbid 202 . . 3  |-  ( ph  ->  M  <_  N )
126 eluz2 10450 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
12736, 47, 125, 126syl3anbrc 1138 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
12835, 127, 1223jca 1134 1  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   4c4 10007   NN0cn0 10177   ZZcz 10238  ;cdc 10338   ZZ>=cuz 10444   RR+crp 10568   (,)cioo 10872   [,)cico 10874   |_cfl 11156   ^cexp 11337   sqrcsqr 11993   expce 12619   _eceu 12620   logclog 20405  ψcchp 20828
This theorem is referenced by:  pntlemh  21246  pntlemq  21248  pntlemr  21249  pntlemj  21250  pntlemf  21252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407
  Copyright terms: Public domain W3C validator