MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleme Structured version   Unicode version

Theorem pntleme 23516
Description: Lemma for pnt 23522. Package up pntlemo 23515 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntleme.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntleme.K  |-  ( ph  ->  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntleme.C  |-  ( ph  ->  A. z  e.  ( 1 (,) +oo )
( ( ( ( abs `  ( R `
 z ) )  x.  ( log `  z
) )  -  (
( 2  /  ( log `  z ) )  x.  sum_ i  e.  ( 1 ... ( |_
`  ( z  /  Y ) ) ) ( ( abs `  ( R `  ( z  /  i ) ) )  x.  ( log `  i ) ) ) )  /  z )  <_  C )
Assertion
Ref Expression
pntleme  |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
Distinct variable groups:    z, C    w, F    y, z    u, k, y, z, L    k, K, y, z    ph, v    i, k, u, v, w, y, z, R    w, U, z    v, W, w, z    k, X, y, z    i, Y, z   
k, a, u, v, y, z, E
Allowed substitution hints:    ph( y, z, w, u, i, k, a)    A( y, z, w, v, u, i, k, a)    B( y, z, w, v, u, i, k, a)    C( y, w, v, u, i, k, a)    D( y, z, w, v, u, i, k, a)    R( a)    U( y, v, u, i, k, a)    E( w, i)    F( y, z, v, u, i, k, a)    K( w, v, u, i, a)    L( w, v, i, a)    W( y, u, i, k, a)    X( w, v, u, i, a)    Y( y, w, v, u, k, a)

Proof of Theorem pntleme
StepHypRef Expression
1 pntlem1.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . 3  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . 3  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . 3  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . 3  |-  D  =  ( A  +  1 )
6 pntlem1.f . . 3  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . 3  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . 3  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . 3  |-  E  =  ( U  /  D
)
10 pntlem1.k . . 3  |-  K  =  ( exp `  ( B  /  E ) )
11 pntlem1.y . . 3  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
12 pntlem1.x . . 3  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
13 pntlem1.c . . 3  |-  ( ph  ->  C  e.  RR+ )
14 pntlem1.w . . 3  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlema 23504 . 2  |-  ( ph  ->  W  e.  RR+ )
162adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A  e.  RR+ )
173adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  B  e.  RR+ )
184adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  L  e.  ( 0 (,) 1
) )
197adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  U  e.  RR+ )
208adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  U  <_  A )
2111adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  ( Y  e.  RR+  /\  1  <_  Y ) )
2212adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  ( X  e.  RR+  /\  Y  < 
X ) )
2313adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  C  e.  RR+ )
24 simpr 461 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  v  e.  ( W [,) +oo )
)
25 eqid 2462 . . . 4  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  1 )  =  ( ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 )
26 eqid 2462 . . . 4  |-  ( |_
`  ( ( ( log `  v )  /  ( log `  K
) )  /  2
) )  =  ( |_ `  ( ( ( log `  v
)  /  ( log `  K ) )  / 
2 ) )
27 pntleme.U . . . . 5  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
2827adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A. z  e.  ( Y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  U )
291, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 23503 . . . . . . . . 9  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
3029simp2d 1004 . . . . . . . 8  |-  ( ph  ->  K  e.  RR+ )
3130rpxrd 11248 . . . . . . 7  |-  ( ph  ->  K  e.  RR* )
32 pnfxr 11312 . . . . . . . 8  |- +oo  e.  RR*
3332a1i 11 . . . . . . 7  |-  ( ph  -> +oo  e.  RR* )
3430rpred 11247 . . . . . . . 8  |-  ( ph  ->  K  e.  RR )
35 ltpnf 11322 . . . . . . . 8  |-  ( K  e.  RR  ->  K  < +oo )
3634, 35syl 16 . . . . . . 7  |-  ( ph  ->  K  < +oo )
37 lbico1 11570 . . . . . . 7  |-  ( ( K  e.  RR*  /\ +oo  e.  RR*  /\  K  < +oo )  ->  K  e.  ( K [,) +oo ) )
3831, 33, 36, 37syl3anc 1223 . . . . . 6  |-  ( ph  ->  K  e.  ( K [,) +oo ) )
39 pntleme.K . . . . . 6  |-  ( ph  ->  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
40 oveq1 6284 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
k  x.  y )  =  ( K  x.  y ) )
4140breq2d 4454 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) ) )
4241anbi2d 703 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) ) ) )
4342anbi1d 704 . . . . . . . . 9  |-  ( k  =  K  ->  (
( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  <->  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
4443rexbidv 2968 . . . . . . . 8  |-  ( k  =  K  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
4544ralbidv 2898 . . . . . . 7  |-  ( k  =  K  ->  ( A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
4645rspcva 3207 . . . . . 6  |-  ( ( K  e.  ( K [,) +oo )  /\  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
4738, 39, 46syl2anc 661 . . . . 5  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
4847adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) )
49 pntleme.C . . . . 5  |-  ( ph  ->  A. z  e.  ( 1 (,) +oo )
( ( ( ( abs `  ( R `
 z ) )  x.  ( log `  z
) )  -  (
( 2  /  ( log `  z ) )  x.  sum_ i  e.  ( 1 ... ( |_
`  ( z  /  Y ) ) ) ( ( abs `  ( R `  ( z  /  i ) ) )  x.  ( log `  i ) ) ) )  /  z )  <_  C )
5049adantr 465 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A. z  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ i  e.  ( 1 ... ( |_ `  ( z  /  Y
) ) ) ( ( abs `  ( R `  ( z  /  i ) ) )  x.  ( log `  i ) ) ) )  /  z )  <_  C )
511, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 48, 50pntlemo 23515 . . 3  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
5251ralrimiva 2873 . 2  |-  ( ph  ->  A. v  e.  ( W [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
53 oveq1 6284 . . . 4  |-  ( w  =  W  ->  (
w [,) +oo )  =  ( W [,) +oo ) )
5453raleqdv 3059 . . 3  |-  ( w  =  W  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) )  <->  A. v  e.  ( W [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) ) )
5554rspcev 3209 . 2  |-  ( ( W  e.  RR+  /\  A. v  e.  ( W [,) +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
5615, 52, 55syl2anc 661 1  |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809   E.wrex 2810   class class class wbr 4442    |-> cmpt 4500   ` cfv 5581  (class class class)co 6277   RRcr 9482   0cc0 9483   1c1 9484    + caddc 9486    x. cmul 9488   +oocpnf 9616   RR*cxr 9618    < clt 9619    <_ cle 9620    - cmin 9796    / cdiv 10197   2c2 10576   3c3 10577   4c4 10578  ;cdc 10967   RR+crp 11211   (,)cioo 11520   [,)cico 11522   [,]cicc 11523   ...cfz 11663   |_cfl 11886   ^cexp 12124   abscabs 13019   sum_csu 13459   expce 13650   logclog 22665  ψcchp 23089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6517  df-om 6674  df-1st 6776  df-2nd 6777  df-supp 6894  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7462  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-fsupp 7821  df-fi 7862  df-sup 7892  df-oi 7926  df-card 8311  df-cda 8539  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-z 10856  df-dec 10968  df-uz 11074  df-q 11174  df-rp 11212  df-xneg 11309  df-xadd 11310  df-xmul 11311  df-ioo 11524  df-ioc 11525  df-ico 11526  df-icc 11527  df-fz 11664  df-fzo 11784  df-fl 11888  df-mod 11955  df-seq 12066  df-exp 12125  df-fac 12311  df-bc 12338  df-hash 12363  df-shft 12852  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-limsup 13245  df-clim 13262  df-rlim 13263  df-sum 13460  df-ef 13656  df-e 13657  df-sin 13658  df-cos 13659  df-pi 13661  df-dvds 13839  df-gcd 13995  df-prm 14068  df-pc 14211  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-ress 14488  df-plusg 14559  df-mulr 14560  df-starv 14561  df-sca 14562  df-vsca 14563  df-ip 14564  df-tset 14565  df-ple 14566  df-ds 14568  df-unif 14569  df-hom 14570  df-cco 14571  df-rest 14669  df-topn 14670  df-0g 14688  df-gsum 14689  df-topgen 14690  df-pt 14691  df-prds 14694  df-xrs 14748  df-qtop 14753  df-imas 14754  df-xps 14756  df-mre 14832  df-mrc 14833  df-acs 14835  df-mnd 15723  df-submnd 15773  df-mulg 15856  df-cntz 16145  df-cmn 16591  df-psmet 18177  df-xmet 18178  df-met 18179  df-bl 18180  df-mopn 18181  df-fbas 18182  df-fg 18183  df-cnfld 18187  df-top 19161  df-bases 19163  df-topon 19164  df-topsp 19165  df-cld 19281  df-ntr 19282  df-cls 19283  df-nei 19360  df-lp 19398  df-perf 19399  df-cn 19489  df-cnp 19490  df-haus 19577  df-tx 19793  df-hmeo 19986  df-fil 20077  df-fm 20169  df-flim 20170  df-flf 20171  df-xms 20553  df-ms 20554  df-tms 20555  df-cncf 21112  df-limc 22000  df-dv 22001  df-log 22667  df-em 23045  df-vma 23094  df-chp 23095
This theorem is referenced by:  pntlemp  23518
  Copyright terms: Public domain W3C validator