MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Structured version   Visualization version   Unicode version

Theorem pntlemd 24481
Description: Lemma for pnt 24501. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  A is C^*,  B is c1,  L is λ,  D is c2, and  F is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
Assertion
Ref Expression
pntlemd  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 11725 . . . 4  |-  ( 0 (,) 1 )  C_  RR
2 pntlem1.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
31, 2sseldi 3442 . . 3  |-  ( ph  ->  L  e.  RR )
4 eliooord 11723 . . . . 5  |-  ( L  e.  ( 0 (,) 1 )  ->  (
0  <  L  /\  L  <  1 ) )
52, 4syl 17 . . . 4  |-  ( ph  ->  ( 0  <  L  /\  L  <  1
) )
65simpld 465 . . 3  |-  ( ph  ->  0  <  L )
73, 6elrpd 11367 . 2  |-  ( ph  ->  L  e.  RR+ )
8 pntlem1.d . . 3  |-  D  =  ( A  +  1 )
9 pntlem1.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
10 1rp 11335 . . . 4  |-  1  e.  RR+
11 rpaddcl 11352 . . . 4  |-  ( ( A  e.  RR+  /\  1  e.  RR+ )  ->  ( A  +  1 )  e.  RR+ )
129, 10, 11sylancl 673 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
138, 12syl5eqel 2544 . 2  |-  ( ph  ->  D  e.  RR+ )
14 pntlem1.f . . 3  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
15 1re 9668 . . . . . . . 8  |-  1  e.  RR
16 ltaddrp 11365 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
1715, 9, 16sylancr 674 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  +  A ) )
189rpcnd 11372 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
19 ax-1cn 9623 . . . . . . . . 9  |-  1  e.  CC
20 addcom 9845 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2118, 19, 20sylancl 673 . . . . . . . 8  |-  ( ph  ->  ( A  +  1 )  =  ( 1  +  A ) )
228, 21syl5eq 2508 . . . . . . 7  |-  ( ph  ->  D  =  ( 1  +  A ) )
2317, 22breqtrrd 4443 . . . . . 6  |-  ( ph  ->  1  <  D )
2413recgt1d 11384 . . . . . 6  |-  ( ph  ->  ( 1  <  D  <->  ( 1  /  D )  <  1 ) )
2523, 24mpbid 215 . . . . 5  |-  ( ph  ->  ( 1  /  D
)  <  1 )
2613rprecred 11381 . . . . . 6  |-  ( ph  ->  ( 1  /  D
)  e.  RR )
27 difrp 11366 . . . . . 6  |-  ( ( ( 1  /  D
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2826, 15, 27sylancl 673 . . . . 5  |-  ( ph  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2925, 28mpbid 215 . . . 4  |-  ( ph  ->  ( 1  -  (
1  /  D ) )  e.  RR+ )
30 3nn0 10916 . . . . . . . . 9  |-  3  e.  NN0
31 2nn 10796 . . . . . . . . 9  |-  2  e.  NN
3230, 31decnncl 11093 . . . . . . . 8  |- ; 3 2  e.  NN
33 nnrp 11340 . . . . . . . 8  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
3432, 33ax-mp 5 . . . . . . 7  |- ; 3 2  e.  RR+
35 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
36 rpmulcl 11353 . . . . . . 7  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
3734, 35, 36sylancr 674 . . . . . 6  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
387, 37rpdivcld 11387 . . . . 5  |-  ( ph  ->  ( L  /  (; 3 2  x.  B ) )  e.  RR+ )
39 2z 10998 . . . . . 6  |-  2  e.  ZZ
40 rpexpcl 12323 . . . . . 6  |-  ( ( D  e.  RR+  /\  2  e.  ZZ )  ->  ( D ^ 2 )  e.  RR+ )
4113, 39, 40sylancl 673 . . . . 5  |-  ( ph  ->  ( D ^ 2 )  e.  RR+ )
4238, 41rpdivcld 11387 . . . 4  |-  ( ph  ->  ( ( L  / 
(; 3 2  x.  B
) )  /  ( D ^ 2 ) )  e.  RR+ )
4329, 42rpmulcld 11386 . . 3  |-  ( ph  ->  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )  e.  RR+ )
4414, 43syl5eqel 2544 . 2  |-  ( ph  ->  F  e.  RR+ )
457, 13, 443jca 1194 1  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   class class class wbr 4416    |-> cmpt 4475   ` cfv 5601  (class class class)co 6315   CCcc 9563   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    x. cmul 9570    < clt 9701    - cmin 9886    / cdiv 10297   NNcn 10637   2c2 10687   3c3 10688   ZZcz 10966  ;cdc 11080   RR+crp 11331   (,)cioo 11664   ^cexp 12304  ψcchp 24068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-er 7389  df-en 7596  df-dom 7597  df-sdom 7598  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-rp 11332  df-ioo 11668  df-seq 12246  df-exp 12305
This theorem is referenced by:  pntlemc  24482  pntlema  24483  pntlemb  24484  pntlemq  24488  pntlemr  24489  pntlemj  24490  pntlemf  24492  pntlemo  24494  pntleml  24498
  Copyright terms: Public domain W3C validator