MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemc Structured version   Unicode version

Theorem pntlemc 22819
Description: Lemma for pnt 22838. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  U is α,  E is ε, and  K is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
Assertion
Ref Expression
pntlemc  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)

Proof of Theorem pntlemc
StepHypRef Expression
1 pntlem1.e . . 3  |-  E  =  ( U  /  D
)
2 pntlem1.u . . . 4  |-  ( ph  ->  U  e.  RR+ )
3 pntlem1.r . . . . . 6  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
4 pntlem1.a . . . . . 6  |-  ( ph  ->  A  e.  RR+ )
5 pntlem1.b . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
6 pntlem1.l . . . . . 6  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
7 pntlem1.d . . . . . 6  |-  D  =  ( A  +  1 )
8 pntlem1.f . . . . . 6  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
93, 4, 5, 6, 7, 8pntlemd 22818 . . . . 5  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
109simp2d 1001 . . . 4  |-  ( ph  ->  D  e.  RR+ )
112, 10rpdivcld 11036 . . 3  |-  ( ph  ->  ( U  /  D
)  e.  RR+ )
121, 11syl5eqel 2522 . 2  |-  ( ph  ->  E  e.  RR+ )
13 pntlem1.k . . 3  |-  K  =  ( exp `  ( B  /  E ) )
145, 12rpdivcld 11036 . . . . 5  |-  ( ph  ->  ( B  /  E
)  e.  RR+ )
1514rpred 11019 . . . 4  |-  ( ph  ->  ( B  /  E
)  e.  RR )
1615rpefcld 13381 . . 3  |-  ( ph  ->  ( exp `  ( B  /  E ) )  e.  RR+ )
1713, 16syl5eqel 2522 . 2  |-  ( ph  ->  K  e.  RR+ )
1812rpred 11019 . . . 4  |-  ( ph  ->  E  e.  RR )
1912rpgt0d 11022 . . . 4  |-  ( ph  ->  0  <  E )
202rpred 11019 . . . . . . . 8  |-  ( ph  ->  U  e.  RR )
214rpred 11019 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
2210rpred 11019 . . . . . . . 8  |-  ( ph  ->  D  e.  RR )
23 pntlem1.u2 . . . . . . . 8  |-  ( ph  ->  U  <_  A )
2421ltp1d 10255 . . . . . . . . 9  |-  ( ph  ->  A  <  ( A  +  1 ) )
2524, 7syl6breqr 4327 . . . . . . . 8  |-  ( ph  ->  A  <  D )
2620, 21, 22, 23, 25lelttrd 9521 . . . . . . 7  |-  ( ph  ->  U  <  D )
2710rpcnd 11021 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
2827mulid1d 9395 . . . . . . 7  |-  ( ph  ->  ( D  x.  1 )  =  D )
2926, 28breqtrrd 4313 . . . . . 6  |-  ( ph  ->  U  <  ( D  x.  1 ) )
30 1red 9393 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
3120, 30, 10ltdivmuld 11066 . . . . . 6  |-  ( ph  ->  ( ( U  /  D )  <  1  <->  U  <  ( D  x.  1 ) ) )
3229, 31mpbird 232 . . . . 5  |-  ( ph  ->  ( U  /  D
)  <  1 )
331, 32syl5eqbr 4320 . . . 4  |-  ( ph  ->  E  <  1 )
34 0xr 9422 . . . . 5  |-  0  e.  RR*
35 1re 9377 . . . . . 6  |-  1  e.  RR
3635rexri 9428 . . . . 5  |-  1  e.  RR*
37 elioo2 11333 . . . . 5  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  ( E  e.  ( 0 (,) 1 )  <->  ( E  e.  RR  /\  0  < 
E  /\  E  <  1 ) ) )
3834, 36, 37mp2an 672 . . . 4  |-  ( E  e.  ( 0 (,) 1 )  <->  ( E  e.  RR  /\  0  < 
E  /\  E  <  1 ) )
3918, 19, 33, 38syl3anbrc 1172 . . 3  |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )
40 efgt1 13392 . . . . 5  |-  ( ( B  /  E )  e.  RR+  ->  1  < 
( exp `  ( B  /  E ) ) )
4114, 40syl 16 . . . 4  |-  ( ph  ->  1  <  ( exp `  ( B  /  E
) ) )
4241, 13syl6breqr 4327 . . 3  |-  ( ph  ->  1  <  K )
43 ltaddrp 11015 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
4435, 4, 43sylancr 663 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  +  A ) )
452rpcnne0d 11028 . . . . . . . 8  |-  ( ph  ->  ( U  e.  CC  /\  U  =/=  0 ) )
46 divid 10013 . . . . . . . 8  |-  ( ( U  e.  CC  /\  U  =/=  0 )  -> 
( U  /  U
)  =  1 )
4745, 46syl 16 . . . . . . 7  |-  ( ph  ->  ( U  /  U
)  =  1 )
484rpcnd 11021 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
49 ax-1cn 9332 . . . . . . . . 9  |-  1  e.  CC
50 addcom 9547 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
5148, 49, 50sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( A  +  1 )  =  ( 1  +  A ) )
527, 51syl5eq 2482 . . . . . . 7  |-  ( ph  ->  D  =  ( 1  +  A ) )
5344, 47, 523brtr4d 4317 . . . . . 6  |-  ( ph  ->  ( U  /  U
)  <  D )
5420, 2, 10, 53ltdiv23d 11075 . . . . 5  |-  ( ph  ->  ( U  /  D
)  <  U )
551, 54syl5eqbr 4320 . . . 4  |-  ( ph  ->  E  <  U )
56 difrp 11016 . . . . 5  |-  ( ( E  e.  RR  /\  U  e.  RR )  ->  ( E  <  U  <->  ( U  -  E )  e.  RR+ ) )
5718, 20, 56syl2anc 661 . . . 4  |-  ( ph  ->  ( E  <  U  <->  ( U  -  E )  e.  RR+ ) )
5855, 57mpbid 210 . . 3  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
5939, 42, 583jca 1168 . 2  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
6012, 17, 593jca 1168 1  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287    e. cmpt 4345   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   3c3 10364  ;cdc 10747   RR+crp 10983   (,)cioo 11292   ^cexp 11857   expce 13339  ψcchp 22405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-rp 10984  df-ioo 11296  df-ico 11298  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345
This theorem is referenced by:  pntlema  22820  pntlemb  22821  pntlemg  22822  pntlemh  22823  pntlemq  22825  pntlemr  22826  pntlemj  22827  pntlemi  22828  pntlemf  22829  pntlemo  22831  pntleme  22832  pntlemp  22834
  Copyright terms: Public domain W3C validator