MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemb Structured version   Visualization version   Unicode version

Theorem pntlemb 24514
Description: Lemma for pnt 24531. Unpack all the lower bounds contained in  W, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Z is x. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
Assertion
Ref Expression
pntlemb  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemb
StepHypRef Expression
1 pntlem1.z . . . . 5  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
2 pntlem1.r . . . . . . . 8  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
3 pntlem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
4 pntlem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
5 pntlem1.l . . . . . . . 8  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
6 pntlem1.d . . . . . . . 8  |-  D  =  ( A  +  1 )
7 pntlem1.f . . . . . . . 8  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
8 pntlem1.u . . . . . . . 8  |-  ( ph  ->  U  e.  RR+ )
9 pntlem1.u2 . . . . . . . 8  |-  ( ph  ->  U  <_  A )
10 pntlem1.e . . . . . . . 8  |-  E  =  ( U  /  D
)
11 pntlem1.k . . . . . . . 8  |-  K  =  ( exp `  ( B  /  E ) )
12 pntlem1.y . . . . . . . 8  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
13 pntlem1.x . . . . . . . 8  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
14 pntlem1.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
15 pntlem1.w . . . . . . . 8  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlema 24513 . . . . . . 7  |-  ( ph  ->  W  e.  RR+ )
1716rpred 11364 . . . . . 6  |-  ( ph  ->  W  e.  RR )
18 pnfxr 11435 . . . . . 6  |- +oo  e.  RR*
19 elico2 11723 . . . . . 6  |-  ( ( W  e.  RR  /\ +oo  e.  RR* )  ->  ( Z  e.  ( W [,) +oo )  <->  ( Z  e.  RR  /\  W  <_  Z  /\  Z  < +oo ) ) )
2017, 18, 19sylancl 675 . . . . 5  |-  ( ph  ->  ( Z  e.  ( W [,) +oo )  <->  ( Z  e.  RR  /\  W  <_  Z  /\  Z  < +oo ) ) )
211, 20mpbid 215 . . . 4  |-  ( ph  ->  ( Z  e.  RR  /\  W  <_  Z  /\  Z  < +oo ) )
2221simp1d 1042 . . 3  |-  ( ph  ->  Z  e.  RR )
2321simp2d 1043 . . 3  |-  ( ph  ->  W  <_  Z )
2422, 16, 23rpgecld 11400 . 2  |-  ( ph  ->  Z  e.  RR+ )
25 1re 9660 . . . . . . 7  |-  1  e.  RR
2625a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  RR )
27 ere 14220 . . . . . . 7  |-  _e  e.  RR
2827a1i 11 . . . . . 6  |-  ( ph  ->  _e  e.  RR )
2924rpsqrtcld 13550 . . . . . . 7  |-  ( ph  ->  ( sqr `  Z
)  e.  RR+ )
3029rpred 11364 . . . . . 6  |-  ( ph  ->  ( sqr `  Z
)  e.  RR )
31 1lt2 10799 . . . . . . . 8  |-  1  <  2
32 egt2lt3 14335 . . . . . . . . 9  |-  ( 2  <  _e  /\  _e  <  3 )
3332simpli 465 . . . . . . . 8  |-  2  <  _e
34 2re 10701 . . . . . . . . 9  |-  2  e.  RR
3525, 34, 27lttri 9778 . . . . . . . 8  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
3631, 33, 35mp2an 686 . . . . . . 7  |-  1  <  _e
3736a1i 11 . . . . . 6  |-  ( ph  ->  1  <  _e )
38 4re 10708 . . . . . . . 8  |-  4  e.  RR
3938a1i 11 . . . . . . 7  |-  ( ph  ->  4  e.  RR )
4032simpri 469 . . . . . . . . 9  |-  _e  <  3
41 3lt4 10802 . . . . . . . . 9  |-  3  <  4
42 3re 10705 . . . . . . . . . 10  |-  3  e.  RR
4327, 42, 38lttri 9778 . . . . . . . . 9  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
4440, 41, 43mp2an 686 . . . . . . . 8  |-  _e  <  4
4544a1i 11 . . . . . . 7  |-  ( ph  ->  _e  <  4 )
46 4nn 10792 . . . . . . . . . . 11  |-  4  e.  NN
47 nnrp 11334 . . . . . . . . . . 11  |-  ( 4  e.  NN  ->  4  e.  RR+ )
4846, 47ax-mp 5 . . . . . . . . . 10  |-  4  e.  RR+
492, 3, 4, 5, 6, 7pntlemd 24511 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
5049simp1d 1042 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  RR+ )
512, 3, 4, 5, 6, 7, 8, 9, 10, 11pntlemc 24512 . . . . . . . . . . . 12  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
5251simp1d 1042 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR+ )
5350, 52rpmulcld 11380 . . . . . . . . . 10  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
54 rpdivcl 11348 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
4  /  ( L  x.  E ) )  e.  RR+ )
5548, 53, 54sylancr 676 . . . . . . . . 9  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  e.  RR+ )
5655rpred 11364 . . . . . . . 8  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  e.  RR )
5753rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  x.  E
)  e.  RR )
5852rpred 11364 . . . . . . . . . . . 12  |-  ( ph  ->  E  e.  RR )
5950rpred 11364 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  e.  RR )
60 eliooord 11719 . . . . . . . . . . . . . . . 16  |-  ( L  e.  ( 0 (,) 1 )  ->  (
0  <  L  /\  L  <  1 ) )
615, 60syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <  L  /\  L  <  1
) )
6261simprd 470 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  <  1 )
6359, 26, 52, 62ltmul1dd 11416 . . . . . . . . . . . . 13  |-  ( ph  ->  ( L  x.  E
)  <  ( 1  x.  E ) )
6452rpcnd 11366 . . . . . . . . . . . . . 14  |-  ( ph  ->  E  e.  CC )
6564mulid2d 9679 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  x.  E
)  =  E )
6663, 65breqtrd 4420 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  x.  E
)  <  E )
6751simp3d 1044 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
6867simp1d 1042 . . . . . . . . . . . . . 14  |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )
69 eliooord 11719 . . . . . . . . . . . . . 14  |-  ( E  e.  ( 0 (,) 1 )  ->  (
0  <  E  /\  E  <  1 ) )
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  <  E  /\  E  <  1
) )
7170simprd 470 . . . . . . . . . . . 12  |-  ( ph  ->  E  <  1 )
7257, 58, 26, 66, 71lttrd 9813 . . . . . . . . . . 11  |-  ( ph  ->  ( L  x.  E
)  <  1 )
73 4pos 10727 . . . . . . . . . . . . 13  |-  0  <  4
7439, 73jctir 547 . . . . . . . . . . . 12  |-  ( ph  ->  ( 4  e.  RR  /\  0  <  4 ) )
75 ltmul2 10478 . . . . . . . . . . . 12  |-  ( ( ( L  x.  E
)  e.  RR  /\  1  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( L  x.  E )  <  1  <->  ( 4  x.  ( L  x.  E
) )  <  (
4  x.  1 ) ) )
7657, 26, 74, 75syl3anc 1292 . . . . . . . . . . 11  |-  ( ph  ->  ( ( L  x.  E )  <  1  <->  ( 4  x.  ( L  x.  E ) )  <  ( 4  x.  1 ) ) )
7772, 76mpbid 215 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( L  x.  E )
)  <  ( 4  x.  1 ) )
78 4cn 10709 . . . . . . . . . . 11  |-  4  e.  CC
7978mulid1i 9663 . . . . . . . . . 10  |-  ( 4  x.  1 )  =  4
8077, 79syl6breq 4435 . . . . . . . . 9  |-  ( ph  ->  ( 4  x.  ( L  x.  E )
)  <  4 )
8139, 39, 53ltmuldivd 11408 . . . . . . . . 9  |-  ( ph  ->  ( ( 4  x.  ( L  x.  E
) )  <  4  <->  4  <  ( 4  / 
( L  x.  E
) ) ) )
8280, 81mpbid 215 . . . . . . . 8  |-  ( ph  ->  4  <  ( 4  /  ( L  x.  E ) ) )
8312simpld 466 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
8483, 55rpaddcld 11379 . . . . . . . . . 10  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+ )
8584rpred 11364 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR )
8656, 83ltaddrp2d 11395 . . . . . . . . 9  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  <  ( Y  +  ( 4  / 
( L  x.  E
) ) ) )
8785resqcld 12480 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  RR )
8813simpld 466 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  RR+ )
8951simp2d 1043 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  RR+ )
90 2z 10993 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
91 rpexpcl 12329 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  RR+  /\  2  e.  ZZ )  ->  ( K ^ 2 )  e.  RR+ )
9289, 90, 91sylancl 675 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ 2 )  e.  RR+ )
9388, 92rpmulcld 11380 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X  x.  ( K ^ 2 ) )  e.  RR+ )
94 4z 10995 . . . . . . . . . . . . . . . 16  |-  4  e.  ZZ
95 rpexpcl 12329 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  x.  ( K ^ 2 ) )  e.  RR+  /\  4  e.  ZZ )  ->  (
( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
9693, 94, 95sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
97 3nn0 10911 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  e.  NN0
98 2nn 10790 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  NN
9997, 98decnncl 11087 . . . . . . . . . . . . . . . . . . . . 21  |- ; 3 2  e.  NN
100 nnrp 11334 . . . . . . . . . . . . . . . . . . . . 21  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
10199, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |- ; 3 2  e.  RR+
102 rpmulcl 11347 . . . . . . . . . . . . . . . . . . . 20  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
103101, 4, 102sylancr 676 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
10467simp3d 1044 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
105 rpexpcl 12329 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( E  e.  RR+  /\  2  e.  ZZ )  ->  ( E ^ 2 )  e.  RR+ )
10652, 90, 105sylancl 675 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( E ^ 2 )  e.  RR+ )
10750, 106rpmulcld 11380 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( L  x.  ( E ^ 2 ) )  e.  RR+ )
108104, 107rpmulcld 11380 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  RR+ )
109103, 108rpdivcld 11381 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  e.  RR+ )
110 3nn 10791 . . . . . . . . . . . . . . . . . . . . 21  |-  3  e.  NN
111 nnrp 11334 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 3  e.  NN  ->  3  e.  RR+ )
112110, 111ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  3  e.  RR+
113 rpmulcl 11347 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  RR+  /\  3  e.  RR+ )  ->  ( U  x.  3 )  e.  RR+ )
1148, 112, 113sylancl 675 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( U  x.  3 )  e.  RR+ )
115114, 14rpaddcld 11379 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  RR+ )
116109, 115rpmulcld 11380 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR+ )
117116rpred 11364 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR )
118117rpefcld 14236 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  e.  RR+ )
11996, 118rpaddcld 11379 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  RR+ )
12087, 119ltaddrpd 11394 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) ) )
121120, 15syl6breqr 4436 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  W )
12287, 17, 22, 121, 23ltletrd 9812 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  Z )
12324rprege0d 11371 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  RR  /\  0  <_  Z )
)
124 resqrtth 13396 . . . . . . . . . . . 12  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
) ^ 2 )  =  Z )
125123, 124syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  Z
) ^ 2 )  =  Z )
126122, 125breqtrrd 4422 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  ( ( sqr `  Z ) ^ 2 ) )
12784rprege0d 11371 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) )  e.  RR  /\  0  <_  ( Y  +  ( 4  / 
( L  x.  E
) ) ) ) )
12829rprege0d 11371 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  Z
)  e.  RR  /\  0  <_  ( sqr `  Z
) ) )
129 lt2sq 12386 . . . . . . . . . . 11  |-  ( ( ( ( Y  +  ( 4  /  ( L  x.  E )
) )  e.  RR  /\  0  <_  ( Y  +  ( 4  / 
( L  x.  E
) ) ) )  /\  ( ( sqr `  Z )  e.  RR  /\  0  <_  ( sqr `  Z ) ) )  ->  ( ( Y  +  ( 4  / 
( L  x.  E
) ) )  < 
( sqr `  Z
)  <->  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  <  (
( sqr `  Z
) ^ 2 ) ) )
130127, 128, 129syl2anc 673 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) )  <  ( sqr `  Z )  <->  ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  < 
( ( sqr `  Z
) ^ 2 ) ) )
131126, 130mpbird 240 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  <  ( sqr `  Z ) )
13256, 85, 30, 86, 131lttrd 9813 . . . . . . . 8  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  <  ( sqr `  Z ) )
13339, 56, 30, 82, 132lttrd 9813 . . . . . . 7  |-  ( ph  ->  4  <  ( sqr `  Z ) )
13428, 39, 30, 45, 133lttrd 9813 . . . . . 6  |-  ( ph  ->  _e  <  ( sqr `  Z ) )
13526, 28, 30, 37, 134lttrd 9813 . . . . 5  |-  ( ph  ->  1  <  ( sqr `  Z ) )
136 0le1 10158 . . . . . . 7  |-  0  <_  1
137136a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  1 )
138 lt2sq 12386 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( sqr `  Z )  e.  RR  /\  0  <_  ( sqr `  Z ) ) )  ->  ( 1  < 
( sqr `  Z
)  <->  ( 1 ^ 2 )  <  (
( sqr `  Z
) ^ 2 ) ) )
13926, 137, 128, 138syl21anc 1291 . . . . 5  |-  ( ph  ->  ( 1  <  ( sqr `  Z )  <->  ( 1 ^ 2 )  < 
( ( sqr `  Z
) ^ 2 ) ) )
140135, 139mpbid 215 . . . 4  |-  ( ph  ->  ( 1 ^ 2 )  <  ( ( sqr `  Z ) ^ 2 ) )
141 sq1 12407 . . . . 5  |-  ( 1 ^ 2 )  =  1
142141a1i 11 . . . 4  |-  ( ph  ->  ( 1 ^ 2 )  =  1 )
143140, 142, 1253brtr3d 4425 . . 3  |-  ( ph  ->  1  <  Z )
14428, 30, 134ltled 9800 . . 3  |-  ( ph  ->  _e  <_  ( sqr `  Z ) )
14522, 83rerpdivcld 11392 . . . 4  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
14683rpred 11364 . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
147146, 55ltaddrpd 11394 . . . . . . . 8  |-  ( ph  ->  Y  <  ( Y  +  ( 4  / 
( L  x.  E
) ) ) )
148146, 85, 30, 147, 131lttrd 9813 . . . . . . 7  |-  ( ph  ->  Y  <  ( sqr `  Z ) )
149146, 30, 29, 148ltmul2dd 11417 . . . . . 6  |-  ( ph  ->  ( ( sqr `  Z
)  x.  Y )  <  ( ( sqr `  Z )  x.  ( sqr `  Z ) ) )
150 remsqsqrt 13397 . . . . . . 7  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
151123, 150syl 17 . . . . . 6  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
152149, 151breqtrd 4420 . . . . 5  |-  ( ph  ->  ( ( sqr `  Z
)  x.  Y )  <  Z )
15330, 22, 83ltmuldivd 11408 . . . . 5  |-  ( ph  ->  ( ( ( sqr `  Z )  x.  Y
)  <  Z  <->  ( sqr `  Z )  <  ( Z  /  Y ) ) )
154152, 153mpbid 215 . . . 4  |-  ( ph  ->  ( sqr `  Z
)  <  ( Z  /  Y ) )
15530, 145, 154ltled 9800 . . 3  |-  ( ph  ->  ( sqr `  Z
)  <_  ( Z  /  Y ) )
156143, 144, 1553jca 1210 . 2  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
15756, 30, 132ltled 9800 . . 3  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z ) )
15888relogcld 23651 . . . . . 6  |-  ( ph  ->  ( log `  X
)  e.  RR )
15989rpred 11364 . . . . . . 7  |-  ( ph  ->  K  e.  RR )
16067simp2d 1043 . . . . . . 7  |-  ( ph  ->  1  <  K )
161159, 160rplogcld 23657 . . . . . 6  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
162158, 161rerpdivcld 11392 . . . . 5  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR )
163 readdcl 9640 . . . . 5  |-  ( ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  /\  2  e.  RR )  ->  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  e.  RR )
164162, 34, 163sylancl 675 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  e.  RR )
16524relogcld 23651 . . . . . 6  |-  ( ph  ->  ( log `  Z
)  e.  RR )
166165, 161rerpdivcld 11392 . . . . 5  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR )
167 nndivre 10667 . . . . 5  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  4  e.  NN )  ->  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  e.  RR )
168166, 46, 167sylancl 675 . . . 4  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR )
16993relogcld 23651 . . . . . 6  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  e.  RR )
170 nndivre 10667 . . . . . . 7  |-  ( ( ( log `  Z
)  e.  RR  /\  4  e.  NN )  ->  ( ( log `  Z
)  /  4 )  e.  RR )
171165, 46, 170sylancl 675 . . . . . 6  |-  ( ph  ->  ( ( log `  Z
)  /  4 )  e.  RR )
172 relogexp 23624 . . . . . . . . 9  |-  ( ( ( X  x.  ( K ^ 2 ) )  e.  RR+  /\  4  e.  ZZ )  ->  ( log `  ( ( X  x.  ( K ^
2 ) ) ^
4 ) )  =  ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) ) )
17393, 94, 172sylancl 675 . . . . . . . 8  |-  ( ph  ->  ( log `  (
( X  x.  ( K ^ 2 ) ) ^ 4 ) )  =  ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) ) )
17496rpred 11364 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR )
175119rpred 11364 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  RR )
176174, 118ltaddrpd 11394 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  <  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
177 rpexpcl 12329 . . . . . . . . . . . . . 14  |-  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  e.  RR+ )
17884, 90, 177sylancl 675 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  RR+ )
179175, 178ltaddrpd 11394 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  <  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  +  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 ) ) )
18087recnd 9687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  CC )
181119rpcnd 11366 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  CC )
182180, 181addcomd 9853 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )  =  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  +  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 ) ) )
18315, 182syl5eq 2517 . . . . . . . . . . . 12  |-  ( ph  ->  W  =  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  +  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 ) ) )
184179, 183breqtrrd 4422 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  <  W )
185175, 17, 22, 184, 23ltletrd 9812 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  <  Z )
186174, 175, 22, 176, 185lttrd 9813 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  <  Z )
187 logltb 23628 . . . . . . . . . 10  |-  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+  /\  Z  e.  RR+ )  ->  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  < 
Z  <->  ( log `  (
( X  x.  ( K ^ 2 ) ) ^ 4 ) )  <  ( log `  Z
) ) )
18896, 24, 187syl2anc 673 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  <  Z  <->  ( log `  ( ( X  x.  ( K ^ 2 ) ) ^ 4 ) )  <  ( log `  Z
) ) )
189186, 188mpbid 215 . . . . . . . 8  |-  ( ph  ->  ( log `  (
( X  x.  ( K ^ 2 ) ) ^ 4 ) )  <  ( log `  Z
) )
190173, 189eqbrtrrd 4418 . . . . . . 7  |-  ( ph  ->  ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) )  < 
( log `  Z
) )
191 ltmuldiv2 10501 . . . . . . . 8  |-  ( ( ( log `  ( X  x.  ( K ^ 2 ) ) )  e.  RR  /\  ( log `  Z )  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) )  <  ( log `  Z )  <->  ( log `  ( X  x.  ( K ^ 2 ) ) )  <  ( ( log `  Z )  /  4 ) ) )
192169, 165, 74, 191syl3anc 1292 . . . . . . 7  |-  ( ph  ->  ( ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) )  <  ( log `  Z )  <->  ( log `  ( X  x.  ( K ^ 2 ) ) )  <  ( ( log `  Z )  /  4 ) ) )
193190, 192mpbid 215 . . . . . 6  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  <  ( ( log `  Z )  /  4 ) )
194169, 171, 161, 193ltdiv1dd 11418 . . . . 5  |-  ( ph  ->  ( ( log `  ( X  x.  ( K ^ 2 ) ) )  /  ( log `  K ) )  < 
( ( ( log `  Z )  /  4
)  /  ( log `  K ) ) )
19588, 92relogmuld 23653 . . . . . . . 8  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  =  ( ( log `  X )  +  ( log `  ( K ^ 2 ) ) ) )
196 relogexp 23624 . . . . . . . . . 10  |-  ( ( K  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( K ^
2 ) )  =  ( 2  x.  ( log `  K ) ) )
19789, 90, 196sylancl 675 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( K ^ 2 ) )  =  ( 2  x.  ( log `  K
) ) )
198197oveq2d 6324 . . . . . . . 8  |-  ( ph  ->  ( ( log `  X
)  +  ( log `  ( K ^ 2 ) ) )  =  ( ( log `  X
)  +  ( 2  x.  ( log `  K
) ) ) )
199195, 198eqtrd 2505 . . . . . . 7  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  =  ( ( log `  X )  +  ( 2  x.  ( log `  K
) ) ) )
200199oveq1d 6323 . . . . . 6  |-  ( ph  ->  ( ( log `  ( X  x.  ( K ^ 2 ) ) )  /  ( log `  K ) )  =  ( ( ( log `  X )  +  ( 2  x.  ( log `  K ) ) )  /  ( log `  K
) ) )
201158recnd 9687 . . . . . . 7  |-  ( ph  ->  ( log `  X
)  e.  CC )
202 2cnd 10704 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
203161rpcnd 11366 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  e.  CC )
204202, 203mulcld 9681 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( log `  K ) )  e.  CC )
205161rpcnne0d 11373 . . . . . . 7  |-  ( ph  ->  ( ( log `  K
)  e.  CC  /\  ( log `  K )  =/=  0 ) )
206 divdir 10315 . . . . . . 7  |-  ( ( ( log `  X
)  e.  CC  /\  ( 2  x.  ( log `  K ) )  e.  CC  /\  (
( log `  K
)  e.  CC  /\  ( log `  K )  =/=  0 ) )  ->  ( ( ( log `  X )  +  ( 2  x.  ( log `  K
) ) )  / 
( log `  K
) )  =  ( ( ( log `  X
)  /  ( log `  K ) )  +  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) ) ) )
207201, 204, 205, 206syl3anc 1292 . . . . . 6  |-  ( ph  ->  ( ( ( log `  X )  +  ( 2  x.  ( log `  K ) ) )  /  ( log `  K
) )  =  ( ( ( log `  X
)  /  ( log `  K ) )  +  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) ) ) )
208205simprd 470 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  =/=  0 )
209202, 203, 208divcan4d 10411 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) )  =  2 )
210209oveq2d 6324 . . . . . 6  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) ) )  =  ( ( ( log `  X
)  /  ( log `  K ) )  +  2 ) )
211200, 207, 2103eqtrd 2509 . . . . 5  |-  ( ph  ->  ( ( log `  ( X  x.  ( K ^ 2 ) ) )  /  ( log `  K ) )  =  ( ( ( log `  X )  /  ( log `  K ) )  +  2 ) )
212165recnd 9687 . . . . . 6  |-  ( ph  ->  ( log `  Z
)  e.  CC )
213 rpcnne0 11342 . . . . . . 7  |-  ( 4  e.  RR+  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
21448, 213mp1i 13 . . . . . 6  |-  ( ph  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
215 divdiv32 10337 . . . . . 6  |-  ( ( ( log `  Z
)  e.  CC  /\  ( 4  e.  CC  /\  4  =/=  0 )  /\  ( ( log `  K )  e.  CC  /\  ( log `  K
)  =/=  0 ) )  ->  ( (
( log `  Z
)  /  4 )  /  ( log `  K
) )  =  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
216212, 214, 205, 215syl3anc 1292 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  4
)  /  ( log `  K ) )  =  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
217194, 211, 2163brtr3d 4425 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  < 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
218164, 168, 217ltled 9800 . . 3  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
219115rpred 11364 . . . . 5  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  RR )
220108, 103rpdivcld 11381 . . . . . . 7  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  e.  RR+ )
221220rpred 11364 . . . . . 6  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  e.  RR )
222221, 165remulcld 9689 . . . . 5  |-  ( ph  ->  ( ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B ) )  x.  ( log `  Z
) )  e.  RR )
223115rpcnd 11366 . . . . . . . . 9  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  CC )
224108rpcnne0d 11373 . . . . . . . . 9  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  CC  /\  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  =/=  0 ) )
225103rpcnne0d 11373 . . . . . . . . 9  |-  ( ph  ->  ( (; 3 2  x.  B
)  e.  CC  /\  (; 3 2  x.  B )  =/=  0 ) )
226 divdiv2 10341 . . . . . . . . 9  |-  ( ( ( ( U  x.  3 )  +  C
)  e.  CC  /\  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  CC  /\  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  =/=  0 )  /\  ( (; 3 2  x.  B
)  e.  CC  /\  (; 3 2  x.  B )  =/=  0 ) )  ->  ( ( ( U  x.  3 )  +  C )  / 
( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  =  ( ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B
) )  /  (
( U  -  E
)  x.  ( L  x.  ( E ^
2 ) ) ) ) )
227223, 224, 225, 226syl3anc 1292 . . . . . . . 8  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  /  (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  =  ( ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B
) )  /  (
( U  -  E
)  x.  ( L  x.  ( E ^
2 ) ) ) ) )
228103rpcnd 11366 . . . . . . . . . 10  |-  ( ph  ->  (; 3 2  x.  B
)  e.  CC )
229223, 228mulcomd 9682 . . . . . . . . 9  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B ) )  =  ( (; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) ) )
230229oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B
) )  /  (
( U  -  E
)  x.  ( L  x.  ( E ^
2 ) ) ) )  =  ( ( (; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) ) )
231 div23 10311 . . . . . . . . 9  |-  ( ( (; 3 2  x.  B
)  e.  CC  /\  ( ( U  x.  3 )  +  C
)  e.  CC  /\  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  CC  /\  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  =/=  0 ) )  ->  ( (
(; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  =  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )
232228, 223, 224, 231syl3anc 1292 . . . . . . . 8  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  =  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )
233227, 230, 2323eqtrd 2509 . . . . . . 7  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  /  (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  =  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )
234117reefcld 14219 . . . . . . . . . 10  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  e.  RR )
235234, 96ltaddrp2d 11395 . . . . . . . . . 10  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
236234, 175, 22, 235, 185lttrd 9813 . . . . . . . . 9  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
Z )
23724reeflogd 23652 . . . . . . . . 9  |-  ( ph  ->  ( exp `  ( log `  Z ) )  =  Z )
238236, 237breqtrrd 4422 . . . . . . . 8  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( exp `  ( log `  Z ) ) )
239 eflt 14248 . . . . . . . . 9  |-  ( ( ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR  /\  ( log `  Z
)  e.  RR )  ->  ( ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  <  ( log `  Z )  <->  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( exp `  ( log `  Z ) ) ) )
240117, 165, 239syl2anc 673 . . . . . . . 8  |-  ( ph  ->  ( ( ( (; 3
2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
( U  x.  3 )  +  C ) )  <  ( log `  Z )  <->  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( exp `  ( log `  Z ) ) ) )
241238, 240mpbird 240 . . . . . . 7  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  <  ( log `  Z ) )
242233, 241eqbrtrd 4416 . . . . . 6  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  /  (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  < 
( log `  Z
) )
243219, 165, 220ltdivmuld 11412 . . . . . 6  |-  ( ph  ->  ( ( ( ( U  x.  3 )  +  C )  / 
( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  < 
( log `  Z
)  <->  ( ( U  x.  3 )  +  C )  <  (
( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  x.  ( log `  Z ) ) ) )
244242, 243mpbid 215 . . . . 5  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  <  ( (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  x.  ( log `  Z ) ) )
245219, 222, 244ltled 9800 . . . 4  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  <_  ( (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  x.  ( log `  Z ) ) )
246104rpcnd 11366 . . . . . 6  |-  ( ph  ->  ( U  -  E
)  e.  CC )
247107rpcnd 11366 . . . . . 6  |-  ( ph  ->  ( L  x.  ( E ^ 2 ) )  e.  CC )
248 divass 10310 . . . . . 6  |-  ( ( ( U  -  E
)  e.  CC  /\  ( L  x.  ( E ^ 2 ) )  e.  CC  /\  (
(; 3 2  x.  B
)  e.  CC  /\  (; 3 2  x.  B )  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B ) )  =  ( ( U  -  E )  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) ) )
249246, 247, 225, 248syl3anc 1292 . . . . 5  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  =  ( ( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) ) )
250249oveq1d 6323 . . . 4  |-  ( ph  ->  ( ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B ) )  x.  ( log `  Z
) )  =  ( ( ( U  -  E )  x.  (
( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) )
251245, 250breqtrd 4420 . . 3  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) )
252157, 218, 2513jca 1210 . 2  |-  ( ph  ->  ( ( 4  / 
( L  x.  E
) )  <_  ( sqr `  Z )  /\  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  /\  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) )
25324, 156, 2523jca 1210 1  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   class class class wbr 4395    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   4c4 10683   ZZcz 10961  ;cdc 11074   RR+crp 11325   (,)cioo 11660   [,)cico 11662   ^cexp 12310   sqrcsqrt 13373   expce 14191   _eceu 14192   logclog 23583  ψcchp 24098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585
This theorem is referenced by:  pntlemg  24515  pntlemh  24516  pntlemn  24517  pntlemq  24518  pntlemr  24519  pntlemj  24520  pntlemf  24522  pntlemk  24523  pntlemo  24524
  Copyright terms: Public domain W3C validator