MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Structured version   Unicode version

Theorem pntlem3 23522
Description: Lemma for pnt 23527. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlem3.1  |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
pntlem3.2  |-  ( ph  ->  C  e.  RR+ )
pntlem3.3  |-  ( (
ph  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
Assertion
Ref Expression
pntlem3  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, t,
y, z, A    u, a, x, y, z    u, C    u, t, R, x, y, z    t, a   
u, T, x    ph, t, x, y, u, z
Allowed substitution hints:    ph( a)    A( u, a)    C( x, y, z, t, a)    R( a)    T( y, z, t, a)

Proof of Theorem pntlem3
Dummy variables  s  w  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11226 . . . 4  |-  RR+  C_  RR
2 eqid 2467 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32subcn 21105 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
43a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5 ssid 3523 . . . . . . . . . . . . 13  |-  CC  C_  CC
6 cncfmptid 21151 . . . . . . . . . . . . 13  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
p  e.  CC  |->  p )  e.  ( CC
-cn-> CC ) )
75, 5, 6mp2an 672 . . . . . . . . . . . 12  |-  ( p  e.  CC  |->  p )  e.  ( CC -cn-> CC )
87a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  p )  e.  ( CC -cn-> CC ) )
92mulcn 21106 . . . . . . . . . . . . 13  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
109a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
11 pntlem3.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  RR+ )
1211adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  C  e.  RR+ )
1312rpcnd 11254 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  C  e.  CC )
145a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  CC  C_  CC )
15 cncfmptc 21150 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
p  e.  CC  |->  C )  e.  ( CC
-cn-> CC ) )
1613, 14, 14, 15syl3anc 1228 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  C )  e.  ( CC -cn-> CC ) )
17 3nn0 10809 . . . . . . . . . . . . . 14  |-  3  e.  NN0
182expcn 21111 . . . . . . . . . . . . . 14  |-  ( 3  e.  NN0  ->  ( p  e.  CC  |->  ( p ^ 3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
1917, 18mp1i 12 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p ^
3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
202cncfcn1 21149 . . . . . . . . . . . . 13  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
2119, 20syl6eleqr 2566 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p ^
3 ) )  e.  ( CC -cn-> CC ) )
222, 10, 16, 21cncfmpt2f 21153 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( C  x.  ( p ^ 3 ) ) )  e.  ( CC -cn-> CC ) )
232, 4, 8, 22cncfmpt2f 21153 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) )  e.  ( CC -cn-> CC ) )
24 pntlem3.1 . . . . . . . . . . . . . . 15  |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
25 ssrab2 3585 . . . . . . . . . . . . . . 15  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  C_  ( 0 [,] A
)
2624, 25eqsstri 3534 . . . . . . . . . . . . . 14  |-  T  C_  ( 0 [,] A
)
27 0re 9592 . . . . . . . . . . . . . . 15  |-  0  e.  RR
28 pntlem3.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR+ )
2928rpred 11252 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
30 iccssre 11602 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0 [,] A
)  C_  RR )
3127, 29, 30sylancr 663 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0 [,] A
)  C_  RR )
3226, 31syl5ss 3515 . . . . . . . . . . . . 13  |-  ( ph  ->  T  C_  RR )
33 0xr 9636 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR*
3433a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  e.  RR* )
3528rpxrd 11253 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR* )
3628rpge0d 11256 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  A )
37 ubicc2 11633 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
3834, 35, 36, 37syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  ( 0 [,] A ) )
39 1rp 11220 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
40 1re 9591 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
41 elicopnf 11616 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  RR  ->  (
z  e.  ( 1 [,) +oo )  <->  ( z  e.  RR  /\  1  <_ 
z ) ) )
4240, 41mp1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( z  e.  ( 1 [,) +oo )  <->  ( z  e.  RR  /\  1  <_  z ) ) )
4342simprbda 623 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  z  e.  RR )
44 0red 9593 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  0  e.  RR )
4540a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  1  e.  RR )
46 0lt1 10071 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
4746a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  0  <  1 )
4842simplbda 624 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  1  <_  z )
4944, 45, 43, 47, 48ltletrd 9737 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  0  <  z )
5043, 49elrpd 11250 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  z  e.  RR+ )
51 pntlem3.A . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
5251adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
53 fveq2 5864 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  ( R `  x )  =  ( R `  z ) )
54 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  x  =  z )
5553, 54oveq12d 6300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( R `  x
)  /  x )  =  ( ( R `
 z )  / 
z ) )
5655fveq2d 5868 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( abs `  ( ( R `
 x )  /  x ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
5756breq1d 4457 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( abs `  (
( R `  x
)  /  x ) )  <_  A  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  A
) )
5857rspcv 3210 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR+  ->  ( A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  A  ->  ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
5950, 52, 58sylc 60 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ( 1 [,) +oo ) )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  <_  A )
6059ralrimiva 2878 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. z  e.  ( 1 [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  A )
61 oveq1 6289 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  1  ->  (
y [,) +oo )  =  ( 1 [,) +oo ) )
6261raleqdv 3064 . . . . . . . . . . . . . . . . 17  |-  ( y  =  1  ->  ( A. z  e.  (
y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  A  <->  A. z  e.  ( 1 [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6362rspcev 3214 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR+  /\  A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  A )  ->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
6439, 60, 63sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  A )
65 breq2 4451 . . . . . . . . . . . . . . . . 17  |-  ( t  =  A  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  A
) )
6665rexralbidv 2981 . . . . . . . . . . . . . . . 16  |-  ( t  =  A  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6766, 24elrab2 3263 . . . . . . . . . . . . . . 15  |-  ( A  e.  T  <->  ( A  e.  ( 0 [,] A
)  /\  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6838, 64, 67sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  T )
69 ne0i 3791 . . . . . . . . . . . . . 14  |-  ( A  e.  T  ->  T  =/=  (/) )
7068, 69syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  T  =/=  (/) )
71 elicc2 11585 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( t  e.  ( 0 [,] A )  <-> 
( t  e.  RR  /\  0  <_  t  /\  t  <_  A ) ) )
7227, 29, 71sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( t  e.  ( 0 [,] A )  <-> 
( t  e.  RR  /\  0  <_  t  /\  t  <_  A ) ) )
7372biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  (
t  e.  RR  /\  0  <_  t  /\  t  <_  A ) )
7473simp2d 1009 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  0  <_  t )
7574a1d 25 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
7675ralrimiva 2878 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
7724raleqi 3062 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  T  0  <_  w  <->  A. w  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t } 0  <_  w )
78 breq2 4451 . . . . . . . . . . . . . . . . 17  |-  ( w  =  t  ->  (
0  <_  w  <->  0  <_  t ) )
7978ralrab2 3269 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
0  <_  w  <->  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
8077, 79bitri 249 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  T  0  <_  w  <->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
8176, 80sylibr 212 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. w  e.  T 
0  <_  w )
82 breq1 4450 . . . . . . . . . . . . . . . 16  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
8382ralbidv 2903 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( A. w  e.  T  x  <_  w  <->  A. w  e.  T  0  <_  w ) )
8483rspcev 3214 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A. w  e.  T  0  <_  w )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w )
8527, 81, 84sylancr 663 . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  e.  RR  A. w  e.  T  x  <_  w )
86 infmrcl 10518 . . . . . . . . . . . . 13  |-  ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w
)  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
8732, 70, 85, 86syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
8887recnd 9618 . . . . . . . . . . 11  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
8988adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
90 elrp 11218 . . . . . . . . . . . . . 14  |-  ( sup ( T ,  RR ,  `'  <  )  e.  RR+ 
<->  ( sup ( T ,  RR ,  `'  <  )  e.  RR  /\  0  <  sup ( T ,  RR ,  `'  <  ) ) )
9190biimpri 206 . . . . . . . . . . . . 13  |-  ( ( sup ( T ,  RR ,  `'  <  )  e.  RR  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR+ )
9287, 91sylan 471 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR+ )
93 3z 10893 . . . . . . . . . . . 12  |-  3  e.  ZZ
94 rpexpcl 12149 . . . . . . . . . . . 12  |-  ( ( sup ( T ,  RR ,  `'  <  )  e.  RR+  /\  3  e.  ZZ )  ->  ( sup ( T ,  RR ,  `'  <  ) ^
3 )  e.  RR+ )
9592, 93, 94sylancl 662 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( sup ( T ,  RR ,  `'  <  ) ^ 3 )  e.  RR+ )
9612, 95rpmulcld 11268 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  RR+ )
97 cncfi 21133 . . . . . . . . . 10  |-  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) )  e.  ( CC -cn-> CC )  /\  sup ( T ,  RR ,  `'  <  )  e.  CC  /\  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) )  e.  RR+ )  ->  E. s  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
9823, 89, 96, 97syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  E. s  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
9987ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
100 rphalfcl 11240 . . . . . . . . . . . . . 14  |-  ( s  e.  RR+  ->  ( s  /  2 )  e.  RR+ )
101100adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR+ )
10299, 101ltaddrpd 11281 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) ) )
103101rpred 11252 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR )
10499, 103readdcld 9619 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )
10599, 104ltnled 9727 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  < 
( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
106102, 105mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  sup ( T ,  RR ,  `'  <  ) )
107 ax-resscn 9545 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
10832, 107syl6ss 3516 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  C_  CC )
109108ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  C_  CC )
110 ssralv 3564 . . . . . . . . . . . . 13  |-  ( T 
C_  CC  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  -> 
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
111109, 110syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  -> 
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
11232ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  C_  RR )
113112sselda 3504 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  RR )
114104adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )
115113, 114ltnled 9727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
11687ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
117103adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
s  /  2 )  e.  RR )
118116, 117resubcld 9983 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  e.  RR )
11999, 101ltsubrpd 11280 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  sup ( T ,  RR ,  `'  <  ) )
120119adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  sup ( T ,  RR ,  `'  <  ) )
12132ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  T  C_  RR )
12285ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
123 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  T )
124 infmrlb 10520 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  C_  RR  /\  E. x  e.  RR  A. w  e.  T  x  <_  w  /\  u  e.  T
)  ->  sup ( T ,  RR ,  `'  <  )  <_  u
)
125121, 122, 123, 124syl3anc 1228 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  u
)
126118, 116, 113, 120, 125ltletrd 9737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  u
)
127113, 116, 117absdifltd 13224 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  <->  ( ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  u  /\  u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) ) ) ) )
128127biimprd 223 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( sup ( T ,  RR ,  `'  <  )  -  (
s  /  2 ) )  <  u  /\  u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  /  2 ) ) )
129126, 128mpand 675 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 ) ) )
130 rphalflt 11242 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  RR+  ->  ( s  /  2 )  < 
s )
131130ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
s  /  2 )  <  s )
132113, 116resubcld 9983 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  sup ( T ,  RR ,  `'  <  ) )  e.  RR )
133132recnd 9618 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  sup ( T ,  RR ,  `'  <  ) )  e.  CC )
134133abscld 13226 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  e.  RR )
135 rpre 11222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  RR+  ->  s  e.  RR )
136135ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  s  e.  RR )
137 lttr 9657 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  e.  RR  /\  (
s  /  2 )  e.  RR  /\  s  e.  RR )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  /\  (
s  /  2 )  <  s )  -> 
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
138134, 117, 136, 137syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  /\  (
s  /  2 )  <  s )  -> 
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
139131, 138mpan2d 674 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
140129, 139syld 44 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
141115, 140sylbird 235 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
142141con1d 124 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( -.  ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
143113recnd 9618 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  CC )
144 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  u  ->  p  =  u )
145 oveq1 6289 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  u  ->  (
p ^ 3 )  =  ( u ^
3 ) )
146145oveq2d 6298 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  u  ->  ( C  x.  ( p ^ 3 ) )  =  ( C  x.  ( u ^ 3 ) ) )
147144, 146oveq12d 6300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  u  ->  (
p  -  ( C  x.  ( p ^
3 ) ) )  =  ( u  -  ( C  x.  (
u ^ 3 ) ) ) )
148 eqid 2467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) )  =  ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) )
149 ovex 6307 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  -  ( C  x.  ( u ^ 3 ) ) )  e. 
_V
150147, 148, 149fvmpt 5948 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  CC  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  u
)  =  ( u  -  ( C  x.  ( u ^ 3 ) ) ) )
151143, 150syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  u
)  =  ( u  -  ( C  x.  ( u ^ 3 ) ) ) )
15289ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
153 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  p  =  sup ( T ,  RR ,  `'  <  ) )
154 oveq1 6289 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( p ^ 3 )  =  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )
155154oveq2d 6298 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( C  x.  ( p ^ 3 ) )  =  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )
156153, 155oveq12d 6300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( p  -  ( C  x.  ( p ^ 3 ) ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
157 ovex 6307 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  e.  _V
158156, 148, 157fvmpt 5948 . . . . . . . . . . . . . . . . . . . 20  |-  ( sup ( T ,  RR ,  `'  <  )  e.  CC  ->  ( (
p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
159152, 158syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
160151, 159oveq12d 6300 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) )  =  ( ( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
161160fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  =  ( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) ) )
162161breq1d 4457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  <->  ( abs `  ( ( u  -  ( C  x.  (
u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
16311rpred 11252 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  C  e.  RR )
164163ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  C  e.  RR )
165 reexpcl 12147 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  RR  /\  3  e.  NN0 )  -> 
( u ^ 3 )  e.  RR )
166113, 17, 165sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u ^ 3 )  e.  RR )
167164, 166remulcld 9620 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( u ^ 3 ) )  e.  RR )
168113, 167resubcld 9983 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  RR )
16917a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  3  e.  NN0 )
170116, 169reexpcld 12291 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  ) ^
3 )  e.  RR )
171164, 170remulcld 9620 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  RR )
172116, 171resubcld 9983 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  e.  RR )
173168, 172, 171absdifltd 13224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  <->  ( (
( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  <  ( u  -  ( C  x.  (
u ^ 3 ) ) )  /\  (
u  -  ( C  x.  ( u ^
3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) ) )
174171recnd 9618 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  CC )
175152, 174npcand 9930 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  =  sup ( T ,  RR ,  `'  <  ) )
176175breq2d 4459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  <->  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) ) )
177 simpll 753 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ph )
178 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
179177, 178sylan 471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
180 infmrlb 10520 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T  C_  RR  /\  E. x  e.  RR  A. w  e.  T  x  <_  w  /\  ( u  -  ( C  x.  (
u ^ 3 ) ) )  e.  T
)  ->  sup ( T ,  RR ,  `'  <  )  <_  (
u  -  ( C  x.  ( u ^
3 ) ) ) )
181121, 122, 179, 180syl3anc 1228 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  (
u  -  ( C  x.  ( u ^
3 ) ) ) )
182116, 168lenltd 9726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  <_ 
( u  -  ( C  x.  ( u ^ 3 ) ) )  <->  -.  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) ) )
183181, 182mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  -.  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) )
184183pm2.21d 106 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
185176, 184sylbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  -> 
( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u ) )
186185adantld 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  <  ( u  -  ( C  x.  ( u ^ 3 ) ) )  /\  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
187173, 186sylbid 215 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
188162, 187sylbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
189142, 188jad 162 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
190189ralimdva 2872 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  T  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
19170ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  =/=  (/) )
19285ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
193 infmrgelb 10519 . . . . . . . . . . . . . 14  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w )  /\  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )  ->  ( ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  sup ( T ,  RR ,  `'  <  )  <->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
194112, 191, 192, 104, 193syl31anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( ( sup ( T ,  RR ,  `'  <  )  +  ( s  / 
2 ) )  <_  sup ( T ,  RR ,  `'  <  )  <->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
195190, 194sylibrd 234 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  T  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
196111, 195syld 44 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
197106, 196mtod 177 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  -.  A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
198197nrexdv 2920 . . . . . . . . 9  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  -.  E. s  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
19998, 198pm2.65da 576 . . . . . . . 8  |-  ( ph  ->  -.  0  <  sup ( T ,  RR ,  `'  <  ) )
200199adantr 465 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  -.  0  <  sup ( T ,  RR ,  `'  <  ) )
20132adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  T  C_  RR )
20270adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  T  =/=  (/) )
20385adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
204135adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  s  e.  RR )
205 infmrgelb 10519 . . . . . . . . . 10  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w )  /\  s  e.  RR )  ->  (
s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. w  e.  T  s  <_  w ) )
206201, 202, 203, 204, 205syl31anc 1231 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. w  e.  T  s  <_  w ) )
20724raleqi 3062 . . . . . . . . . 10  |-  ( A. w  e.  T  s  <_  w  <->  A. w  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t } s  <_  w )
208 breq2 4451 . . . . . . . . . . 11  |-  ( w  =  t  ->  (
s  <_  w  <->  s  <_  t ) )
209208ralrab2 3269 . . . . . . . . . 10  |-  ( A. w  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
s  <_  w  <->  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
210207, 209bitri 249 . . . . . . . . 9  |-  ( A. w  e.  T  s  <_  w  <->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
211206, 210syl6bb 261 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. t  e.  (
0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) ) )
212 rpgt0 11227 . . . . . . . . . 10  |-  ( s  e.  RR+  ->  0  < 
s )
213212adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  0  <  s )
214 0red 9593 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  0  e.  RR )
21587adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
216 ltletr 9672 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  s  e.  RR  /\  sup ( T ,  RR ,  `'  <  )  e.  RR )  ->  ( ( 0  <  s  /\  s  <_  sup ( T ,  RR ,  `'  <  ) )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
217214, 204, 215, 216syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( (
0  <  s  /\  s  <_  sup ( T ,  RR ,  `'  <  ) )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
218213, 217mpand 675 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
219211, 218sylbird 235 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t  ->  s  <_  t )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
220200, 219mtod 177 . . . . . 6  |-  ( (
ph  /\  s  e.  RR+ )  ->  -.  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
221 rexanali 2917 . . . . . 6  |-  ( E. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t  /\  -.  s  <_  t )  <->  -.  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
222220, 221sylibr 212 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  /\  -.  s  <_  t ) )
223 fveq2 5864 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( R `  z )  =  ( R `  x ) )
224 id 22 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  z  =  x )
225223, 224oveq12d 6300 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( R `  z
)  /  z )  =  ( ( R `
 x )  /  x ) )
226225fveq2d 5868 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  x
)  /  x ) ) )
227226breq1d 4457 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  x )  /  x
) )  <_  t
) )
228227cbvralv 3088 . . . . . . . . . . 11  |-  ( A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  <->  A. x  e.  ( y [,) +oo ) ( abs `  ( ( R `  x )  /  x ) )  <_  t )
229 rpre 11222 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e.  RR )
230229ad2antll 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  RR )
231 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  <_  x )
232 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  e.  RR+ )
233232rpred 11252 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  e.  RR )
234 elicopnf 11616 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR  ->  (
x  e.  ( y [,) +oo )  <->  ( x  e.  RR  /\  y  <_  x ) ) )
235233, 234syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( x  e.  ( y [,) +oo ) 
<->  ( x  e.  RR  /\  y  <_  x )
) )
236230, 231, 235mpbir2and 920 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  ( y [,) +oo ) )
237 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
238237pntrval 23475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
239238ad2antll 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( R `  x )  =  ( (ψ `  x )  -  x ) )
240239oveq1d 6297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( R `  x )  /  x )  =  ( ( (ψ `  x
)  -  x )  /  x ) )
241 chpcl 23126 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
242230, 241syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  (ψ `  x
)  e.  RR )
243242recnd 9618 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  (ψ `  x
)  e.  CC )
244 rpcn 11224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  e.  CC )
245244ad2antll 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  CC )
246 rpne0 11231 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  =/=  0 )
247246ad2antll 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  =/=  0 )
248243, 245, 245, 247divsubdird 10355 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  -  x )  /  x
)  =  ( ( (ψ `  x )  /  x )  -  (
x  /  x ) ) )
249245, 247dividd 10314 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( x  /  x )  =  1 )
250249oveq2d 6298 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  (
x  /  x ) )  =  ( ( (ψ `  x )  /  x )  -  1 ) )
251240, 248, 2503eqtrrd 2513 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  =  ( ( R `  x )  /  x ) )
252251fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  =  ( abs `  ( ( R `  x )  /  x
) ) )
253252breq1d 4457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <_  t  <->  ( abs `  ( ( R `  x )  /  x
) )  <_  t
) )
254 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  -.  s  <_  t )
255254ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  -.  s  <_  t )
25631ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  ( 0 [,] A )  C_  RR )
257256ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( 0 [,] A )  C_  RR )
258 simplrl 759 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
t  e.  ( 0 [,] A ) )
259258adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  e.  ( 0 [,] A
) )
260257, 259sseldd 3505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  e.  RR )
261 simp-4r 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  s  e.  RR+ )
262261rpred 11252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  s  e.  RR )
263260, 262ltnled 9727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( t  <  s  <->  -.  s  <_  t ) )
264255, 263mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  <  s )
265229, 241syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
266 rerpdivcl 11243 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (ψ `  x )  e.  RR  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
267265, 266mpancom 669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  RR )
268267ad2antll 728 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (ψ `  x )  /  x
)  e.  RR )
269 resubcl 9879 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (ψ `  x
)  /  x )  e.  RR  /\  1  e.  RR )  ->  (
( (ψ `  x
)  /  x )  -  1 )  e.  RR )
270268, 40, 269sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  e.  RR )
271270recnd 9618 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  e.  CC )
272271abscld 13226 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  e.  RR )
273 lelttr 9671 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  e.  RR  /\  t  e.  RR  /\  s  e.  RR )  ->  (
( ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <_  t  /\  t  <  s )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
274272, 260, 262, 273syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <_  t  /\  t  <  s )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
275264, 274mpan2d 674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <_  t  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) )
276253, 275sylbird 235 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( R `
 x )  /  x ) )  <_ 
t  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
277236, 276embantd 54 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
x  e.  ( y [,) +oo )  -> 
( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
278277exp32 605 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( y  <_  x  ->  ( x  e.  RR+  ->  ( ( x  e.  ( y [,) +oo )  ->  ( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) ) )
279278com24 87 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( ( x  e.  ( y [,) +oo )  ->  ( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( x  e.  RR+  ->  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) ) )
280279ralimdv2 2871 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( A. x  e.  ( y [,) +oo ) ( abs `  (
( R `  x
)  /  x ) )  <_  t  ->  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
281228, 280syl5bi 217 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
282281reximdva 2938 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
283282anassrs 648 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A ) )  /\  -.  s  <_ 
t )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
284283impancom 440 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A ) )  /\  E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t )  ->  ( -.  s  <_ 
t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
285284expimpd 603 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A
) )  ->  (
( E. y  e.  RR+  A. z  e.  ( y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  /\  -.  s  <_  t )  ->  E. y  e.  RR+  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
286285rexlimdva 2955 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( E. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t  /\  -.  s  <_  t )  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
287222, 286mpd 15 . . . 4  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
288 ssrexv 3565 . . . 4  |-  ( RR+  C_  RR  ->  ( E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s )  ->  E. y  e.  RR  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
2891, 287, 288mpsyl 63 . . 3  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
290289ralrimiva 2878 . 2  |-  ( ph  ->  A. s  e.  RR+  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
291267recnd 9618 . . . . 5  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  CC )
292291rgen 2824 . . . 4  |-  A. x  e.  RR+  ( (ψ `  x )  /  x
)  e.  CC
293292a1i 11 . . 3  |-  ( ph  ->  A. x  e.  RR+  ( (ψ `  x )  /  x )  e.  CC )
2941a1i 11 . . 3  |-  ( ph  -> 
RR+  C_  RR )
295 1cnd 9608 . . 3  |-  ( ph  ->  1  e.  CC )
296293, 294, 295rlim2 13278 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1  <->  A. s  e.  RR+  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
297290, 296mpbird 232 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    C_ wss 3476   (/)c0 3785   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   ` cfv 5586  (class class class)co 6282   supcsup 7896   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   2c2 10581   3c3 10582   NN0cn0 10791   ZZcz 10860   RR+crp 11216   [,)cico 11527   [,]cicc 11528   ^cexp 12130   abscabs 13026    ~~> r crli 13267   TopOpenctopn 14673  ℂfldccnfld 18191    Cn ccn 19491    tX ctx 19796   -cn->ccncf 21115  ψcchp 23094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-gcd 14000  df-prm 14073  df-pc 14216  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672  df-vma 23099  df-chp 23100
This theorem is referenced by:  pntleml  23524
  Copyright terms: Public domain W3C validator