MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Unicode version

Theorem pntlem3 21256
Description: Lemma for pnt 21261. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlem3.1  |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
pntlem3.2  |-  ( ph  ->  C  e.  RR+ )
pntlem3.3  |-  ( (
ph  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
Assertion
Ref Expression
pntlem3  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, t,
y, z, A    u, a, x, y, z    u, C    u, t, R, x, y, z    t, a   
u, T, x    ph, t, x, y, u, z
Allowed substitution hints:    ph( a)    A( u, a)    C( x, y, z, t, a)    R( a)    T( y, z, t, a)

Proof of Theorem pntlem3
Dummy variables  s  w  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 10578 . . . 4  |-  RR+  C_  RR
2 eqid 2404 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32subcn 18849 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
43a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5 ssid 3327 . . . . . . . . . . . . 13  |-  CC  C_  CC
6 cncfmptid 18895 . . . . . . . . . . . . 13  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
p  e.  CC  |->  p )  e.  ( CC
-cn-> CC ) )
75, 5, 6mp2an 654 . . . . . . . . . . . 12  |-  ( p  e.  CC  |->  p )  e.  ( CC -cn-> CC )
87a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  p )  e.  ( CC -cn-> CC ) )
92mulcn 18850 . . . . . . . . . . . . 13  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
109a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
11 pntlem3.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  RR+ )
1211adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  C  e.  RR+ )
1312rpcnd 10606 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  C  e.  CC )
145a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  CC  C_  CC )
15 cncfmptc 18894 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
p  e.  CC  |->  C )  e.  ( CC
-cn-> CC ) )
1613, 14, 14, 15syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  C )  e.  ( CC -cn-> CC ) )
17 3nn0 10195 . . . . . . . . . . . . . 14  |-  3  e.  NN0
182expcn 18855 . . . . . . . . . . . . . 14  |-  ( 3  e.  NN0  ->  ( p  e.  CC  |->  ( p ^ 3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
1917, 18mp1i 12 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p ^
3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
202cncfcn1 18893 . . . . . . . . . . . . 13  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
2119, 20syl6eleqr 2495 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p ^
3 ) )  e.  ( CC -cn-> CC ) )
222, 10, 16, 21cncfmpt2f 18897 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( C  x.  ( p ^ 3 ) ) )  e.  ( CC -cn-> CC ) )
232, 4, 8, 22cncfmpt2f 18897 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) )  e.  ( CC -cn-> CC ) )
24 pntlem3.1 . . . . . . . . . . . . . . 15  |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
25 ssrab2 3388 . . . . . . . . . . . . . . 15  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  C_  ( 0 [,] A
)
2624, 25eqsstri 3338 . . . . . . . . . . . . . 14  |-  T  C_  ( 0 [,] A
)
27 0re 9047 . . . . . . . . . . . . . . 15  |-  0  e.  RR
28 pntlem3.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR+ )
2928rpred 10604 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
30 iccssre 10948 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0 [,] A
)  C_  RR )
3127, 29, 30sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0 [,] A
)  C_  RR )
3226, 31syl5ss 3319 . . . . . . . . . . . . 13  |-  ( ph  ->  T  C_  RR )
33 0xr 9087 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR*
3433a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  e.  RR* )
3528rpxrd 10605 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR* )
3628rpge0d 10608 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  A )
37 ubicc2 10970 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
3834, 35, 36, 37syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  ( 0 [,] A ) )
39 1rp 10572 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
40 1re 9046 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
41 elicopnf 10956 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  RR  ->  (
z  e.  ( 1 [,)  +oo )  <->  ( z  e.  RR  /\  1  <_ 
z ) ) )
4240, 41mp1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( z  e.  ( 1 [,)  +oo )  <->  ( z  e.  RR  /\  1  <_  z ) ) )
4342simprbda 607 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  z  e.  RR )
4427a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  0  e.  RR )
4540a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR )
46 0lt1 9506 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
4746a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  0  <  1 )
4842simplbda 608 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  1  <_  z )
4944, 45, 43, 47, 48ltletrd 9186 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  0  <  z )
5043, 49elrpd 10602 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  z  e.  RR+ )
51 pntlem3.A . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
5251adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
53 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  ( R `  x )  =  ( R `  z ) )
54 id 20 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  x  =  z )
5553, 54oveq12d 6058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( R `  x
)  /  x )  =  ( ( R `
 z )  / 
z ) )
5655fveq2d 5691 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( abs `  ( ( R `
 x )  /  x ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
5756breq1d 4182 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( abs `  (
( R `  x
)  /  x ) )  <_  A  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  A
) )
5857rspcv 3008 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR+  ->  ( A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  A  ->  ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
5950, 52, 58sylc 58 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  <_  A )
6059ralrimiva 2749 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. z  e.  ( 1 [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  A )
61 oveq1 6047 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  1  ->  (
y [,)  +oo )  =  ( 1 [,)  +oo ) )
6261raleqdv 2870 . . . . . . . . . . . . . . . . 17  |-  ( y  =  1  ->  ( A. z  e.  (
y [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  A  <->  A. z  e.  ( 1 [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6362rspcev 3012 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR+  /\  A. z  e.  ( 1 [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  A
)  ->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
6439, 60, 63sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  A
)
65 breq2 4176 . . . . . . . . . . . . . . . . 17  |-  ( t  =  A  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  A
) )
6665rexralbidv 2710 . . . . . . . . . . . . . . . 16  |-  ( t  =  A  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6766, 24elrab2 3054 . . . . . . . . . . . . . . 15  |-  ( A  e.  T  <->  ( A  e.  ( 0 [,] A
)  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6838, 64, 67sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  T )
69 ne0i 3594 . . . . . . . . . . . . . 14  |-  ( A  e.  T  ->  T  =/=  (/) )
7068, 69syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  T  =/=  (/) )
71 elicc2 10931 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( t  e.  ( 0 [,] A )  <-> 
( t  e.  RR  /\  0  <_  t  /\  t  <_  A ) ) )
7227, 29, 71sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( t  e.  ( 0 [,] A )  <-> 
( t  e.  RR  /\  0  <_  t  /\  t  <_  A ) ) )
7372biimpa 471 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  (
t  e.  RR  /\  0  <_  t  /\  t  <_  A ) )
7473simp2d 970 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  0  <_  t )
7574a1d 23 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
7675ralrimiva 2749 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
7724raleqi 2868 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  T  0  <_  w  <->  A. w  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t } 0  <_  w
)
78 breq2 4176 . . . . . . . . . . . . . . . . 17  |-  ( w  =  t  ->  (
0  <_  w  <->  0  <_  t ) )
7978ralrab2 3060 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
0  <_  w  <->  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
8077, 79bitri 241 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  T  0  <_  w  <->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
8176, 80sylibr 204 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. w  e.  T 
0  <_  w )
82 breq1 4175 . . . . . . . . . . . . . . . 16  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
8382ralbidv 2686 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( A. w  e.  T  x  <_  w  <->  A. w  e.  T  0  <_  w ) )
8483rspcev 3012 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A. w  e.  T  0  <_  w )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w )
8527, 81, 84sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  e.  RR  A. w  e.  T  x  <_  w )
86 infmrcl 9943 . . . . . . . . . . . . 13  |-  ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w
)  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
8732, 70, 85, 86syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
8887recnd 9070 . . . . . . . . . . 11  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
8988adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
90 elrp 10570 . . . . . . . . . . . . . 14  |-  ( sup ( T ,  RR ,  `'  <  )  e.  RR+ 
<->  ( sup ( T ,  RR ,  `'  <  )  e.  RR  /\  0  <  sup ( T ,  RR ,  `'  <  ) ) )
9190biimpri 198 . . . . . . . . . . . . 13  |-  ( ( sup ( T ,  RR ,  `'  <  )  e.  RR  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR+ )
9287, 91sylan 458 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR+ )
9317nn0zi 10262 . . . . . . . . . . . 12  |-  3  e.  ZZ
94 rpexpcl 11355 . . . . . . . . . . . 12  |-  ( ( sup ( T ,  RR ,  `'  <  )  e.  RR+  /\  3  e.  ZZ )  ->  ( sup ( T ,  RR ,  `'  <  ) ^
3 )  e.  RR+ )
9592, 93, 94sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( sup ( T ,  RR ,  `'  <  ) ^ 3 )  e.  RR+ )
9612, 95rpmulcld 10620 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  RR+ )
97 cncfi 18877 . . . . . . . . . 10  |-  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) )  e.  ( CC -cn-> CC )  /\  sup ( T ,  RR ,  `'  <  )  e.  CC  /\  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) )  e.  RR+ )  ->  E. s  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
9823, 89, 96, 97syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  E. s  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
9987ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
100 rphalfcl 10592 . . . . . . . . . . . . . 14  |-  ( s  e.  RR+  ->  ( s  /  2 )  e.  RR+ )
101100adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR+ )
10299, 101ltaddrpd 10633 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) ) )
103101rpred 10604 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR )
10499, 103readdcld 9071 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )
10599, 104ltnled 9176 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  < 
( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
106102, 105mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  sup ( T ,  RR ,  `'  <  ) )
107 ax-resscn 9003 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
10832, 107syl6ss 3320 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  C_  CC )
109108ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  C_  CC )
110 ssralv 3367 . . . . . . . . . . . . 13  |-  ( T 
C_  CC  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  -> 
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
111109, 110syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  -> 
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
11232ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  C_  RR )
113112sselda 3308 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  RR )
114104adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )
115113, 114ltnled 9176 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
11687ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
117103adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
s  /  2 )  e.  RR )
118116, 117resubcld 9421 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  e.  RR )
11999, 101ltsubrpd 10632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  sup ( T ,  RR ,  `'  <  ) )
120119adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  sup ( T ,  RR ,  `'  <  ) )
12132ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  T  C_  RR )
12285ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
123 simpr 448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  T )
124 infmrlb 9945 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  C_  RR  /\  E. x  e.  RR  A. w  e.  T  x  <_  w  /\  u  e.  T
)  ->  sup ( T ,  RR ,  `'  <  )  <_  u
)
125121, 122, 123, 124syl3anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  u
)
126118, 116, 113, 120, 125ltletrd 9186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  u
)
127113, 116, 117absdifltd 12191 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  <->  ( ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  u  /\  u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) ) ) ) )
128127biimprd 215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( sup ( T ,  RR ,  `'  <  )  -  (
s  /  2 ) )  <  u  /\  u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  /  2 ) ) )
129126, 128mpand 657 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 ) ) )
130 rphalflt 10594 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  RR+  ->  ( s  /  2 )  < 
s )
131130ad2antlr 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
s  /  2 )  <  s )
132113, 116resubcld 9421 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  sup ( T ,  RR ,  `'  <  ) )  e.  RR )
133132recnd 9070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  sup ( T ,  RR ,  `'  <  ) )  e.  CC )
134133abscld 12193 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  e.  RR )
135 rpre 10574 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  RR+  ->  s  e.  RR )
136135ad2antlr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  s  e.  RR )
137 lttr 9108 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  e.  RR  /\  (
s  /  2 )  e.  RR  /\  s  e.  RR )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  /\  (
s  /  2 )  <  s )  -> 
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
138134, 117, 136, 137syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  /\  (
s  /  2 )  <  s )  -> 
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
139131, 138mpan2d 656 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
140129, 139syld 42 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
141115, 140sylbird 227 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
142141con1d 118 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( -.  ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
143113recnd 9070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  CC )
144 id 20 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  u  ->  p  =  u )
145 oveq1 6047 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  u  ->  (
p ^ 3 )  =  ( u ^
3 ) )
146145oveq2d 6056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  u  ->  ( C  x.  ( p ^ 3 ) )  =  ( C  x.  ( u ^ 3 ) ) )
147144, 146oveq12d 6058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  u  ->  (
p  -  ( C  x.  ( p ^
3 ) ) )  =  ( u  -  ( C  x.  (
u ^ 3 ) ) ) )
148 eqid 2404 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) )  =  ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) )
149 ovex 6065 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  -  ( C  x.  ( u ^ 3 ) ) )  e. 
_V
150147, 148, 149fvmpt 5765 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  CC  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  u
)  =  ( u  -  ( C  x.  ( u ^ 3 ) ) ) )
151143, 150syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  u
)  =  ( u  -  ( C  x.  ( u ^ 3 ) ) ) )
15289ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
153 id 20 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  p  =  sup ( T ,  RR ,  `'  <  ) )
154 oveq1 6047 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( p ^ 3 )  =  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )
155154oveq2d 6056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( C  x.  ( p ^ 3 ) )  =  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )
156153, 155oveq12d 6058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( p  -  ( C  x.  ( p ^ 3 ) ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
157 ovex 6065 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  e.  _V
158156, 148, 157fvmpt 5765 . . . . . . . . . . . . . . . . . . . 20  |-  ( sup ( T ,  RR ,  `'  <  )  e.  CC  ->  ( (
p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
159152, 158syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
160151, 159oveq12d 6058 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) )  =  ( ( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
161160fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  =  ( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) ) )
162161breq1d 4182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  <->  ( abs `  ( ( u  -  ( C  x.  (
u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
16311rpred 10604 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  C  e.  RR )
164163ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  C  e.  RR )
165 reexpcl 11353 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  RR  /\  3  e.  NN0 )  -> 
( u ^ 3 )  e.  RR )
166113, 17, 165sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u ^ 3 )  e.  RR )
167164, 166remulcld 9072 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( u ^ 3 ) )  e.  RR )
168113, 167resubcld 9421 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  RR )
16917a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  3  e.  NN0 )
170116, 169reexpcld 11495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  ) ^
3 )  e.  RR )
171164, 170remulcld 9072 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  RR )
172116, 171resubcld 9421 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  e.  RR )
173168, 172, 171absdifltd 12191 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  <->  ( (
( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  <  ( u  -  ( C  x.  (
u ^ 3 ) ) )  /\  (
u  -  ( C  x.  ( u ^
3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) ) )
174171recnd 9070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  CC )
175152, 174npcand 9371 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  =  sup ( T ,  RR ,  `'  <  ) )
176175breq2d 4184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  <->  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) ) )
177 simpll 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ph )
178 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
179177, 178sylan 458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
180 infmrlb 9945 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T  C_  RR  /\  E. x  e.  RR  A. w  e.  T  x  <_  w  /\  ( u  -  ( C  x.  (
u ^ 3 ) ) )  e.  T
)  ->  sup ( T ,  RR ,  `'  <  )  <_  (
u  -  ( C  x.  ( u ^
3 ) ) ) )
181121, 122, 179, 180syl3anc 1184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  (
u  -  ( C  x.  ( u ^
3 ) ) ) )
182116, 168lenltd 9175 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  <_ 
( u  -  ( C  x.  ( u ^ 3 ) ) )  <->  -.  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) ) )
183181, 182mpbid 202 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  -.  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) )
184183pm2.21d 100 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
185176, 184sylbid 207 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  -> 
( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u ) )
186185adantld 454 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  <  ( u  -  ( C  x.  ( u ^ 3 ) ) )  /\  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
187173, 186sylbid 207 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
188162, 187sylbid 207 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
189142, 188jad 156 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
190189ralimdva 2744 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  T  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
19170ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  =/=  (/) )
19285ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
193 infmrgelb 9944 . . . . . . . . . . . . . 14  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w )  /\  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )  ->  ( ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  sup ( T ,  RR ,  `'  <  )  <->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
194112, 191, 192, 104, 193syl31anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( ( sup ( T ,  RR ,  `'  <  )  +  ( s  / 
2 ) )  <_  sup ( T ,  RR ,  `'  <  )  <->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
195190, 194sylibrd 226 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  T  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
196111, 195syld 42 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
197106, 196mtod 170 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  -.  A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
198197nrexdv 2769 . . . . . . . . 9  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  -.  E. s  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
19998, 198pm2.65da 560 . . . . . . . 8  |-  ( ph  ->  -.  0  <  sup ( T ,  RR ,  `'  <  ) )
200199adantr 452 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  -.  0  <  sup ( T ,  RR ,  `'  <  ) )
20132adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  T  C_  RR )
20270adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  T  =/=  (/) )
20385adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
204135adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  s  e.  RR )
205 infmrgelb 9944 . . . . . . . . . 10  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w )  /\  s  e.  RR )  ->  (
s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. w  e.  T  s  <_  w ) )
206201, 202, 203, 204, 205syl31anc 1187 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. w  e.  T  s  <_  w ) )
20724raleqi 2868 . . . . . . . . . 10  |-  ( A. w  e.  T  s  <_  w  <->  A. w  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t } s  <_  w
)
208 breq2 4176 . . . . . . . . . . 11  |-  ( w  =  t  ->  (
s  <_  w  <->  s  <_  t ) )
209208ralrab2 3060 . . . . . . . . . 10  |-  ( A. w  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
s  <_  w  <->  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
210207, 209bitri 241 . . . . . . . . 9  |-  ( A. w  e.  T  s  <_  w  <->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
211206, 210syl6bb 253 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. t  e.  (
0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) ) )
212 rpgt0 10579 . . . . . . . . . 10  |-  ( s  e.  RR+  ->  0  < 
s )
213212adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  0  <  s )
21427a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  0  e.  RR )
21587adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
216 ltletr 9122 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  s  e.  RR  /\  sup ( T ,  RR ,  `'  <  )  e.  RR )  ->  ( ( 0  <  s  /\  s  <_  sup ( T ,  RR ,  `'  <  ) )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
217214, 204, 215, 216syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( (
0  <  s  /\  s  <_  sup ( T ,  RR ,  `'  <  ) )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
218213, 217mpand 657 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
219211, 218sylbird 227 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  ->  s  <_  t )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
220200, 219mtod 170 . . . . . 6  |-  ( (
ph  /\  s  e.  RR+ )  ->  -.  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
221 rexanali 2712 . . . . . 6  |-  ( E. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  /\  -.  s  <_  t
)  <->  -.  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
222220, 221sylibr 204 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  /\  -.  s  <_  t ) )
223 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( R `  z )  =  ( R `  x ) )
224 id 20 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  z  =  x )
225223, 224oveq12d 6058 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( R `  z
)  /  z )  =  ( ( R `
 x )  /  x ) )
226225fveq2d 5691 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  x
)  /  x ) ) )
227226breq1d 4182 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  x )  /  x
) )  <_  t
) )
228227cbvralv 2892 . . . . . . . . . . 11  |-  ( A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  <->  A. x  e.  ( y [,)  +oo ) ( abs `  ( ( R `  x )  /  x
) )  <_  t
)
229 rpre 10574 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e.  RR )
230229ad2antll 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  RR )
231 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  <_  x )
232 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  e.  RR+ )
233232rpred 10604 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  e.  RR )
234 elicopnf 10956 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR  ->  (
x  e.  ( y [,)  +oo )  <->  ( x  e.  RR  /\  y  <_  x ) ) )
235233, 234syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( x  e.  ( y [,)  +oo ) 
<->  ( x  e.  RR  /\  y  <_  x )
) )
236230, 231, 235mpbir2and 889 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  ( y [,)  +oo ) )
237 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
238237pntrval 21209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
239238ad2antll 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( R `  x )  =  ( (ψ `  x )  -  x ) )
240239oveq1d 6055 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( R `  x )  /  x )  =  ( ( (ψ `  x
)  -  x )  /  x ) )
241 chpcl 20860 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
242230, 241syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  (ψ `  x
)  e.  RR )
243242recnd 9070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  (ψ `  x
)  e.  CC )
244 rpcn 10576 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  e.  CC )
245244ad2antll 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  CC )
246 rpne0 10583 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  =/=  0 )
247246ad2antll 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  =/=  0 )
248243, 245, 245, 247divsubdird 9785 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  -  x )  /  x
)  =  ( ( (ψ `  x )  /  x )  -  (
x  /  x ) ) )
249245, 247dividd 9744 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( x  /  x )  =  1 )
250249oveq2d 6056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  (
x  /  x ) )  =  ( ( (ψ `  x )  /  x )  -  1 ) )
251240, 248, 2503eqtrrd 2441 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  =  ( ( R `  x )  /  x ) )
252251fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  =  ( abs `  ( ( R `  x )  /  x
) ) )
253252breq1d 4182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <_  t  <->  ( abs `  ( ( R `  x )  /  x
) )  <_  t
) )
254 simprr 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  -.  s  <_  t )
255254ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  -.  s  <_  t )
25631ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  ( 0 [,] A )  C_  RR )
257256ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( 0 [,] A )  C_  RR )
258 simplrl 737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
t  e.  ( 0 [,] A ) )
259258adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  e.  ( 0 [,] A
) )
260257, 259sseldd 3309 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  e.  RR )
261 simp-4r 744 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  s  e.  RR+ )
262261rpred 10604 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  s  e.  RR )
263260, 262ltnled 9176 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( t  <  s  <->  -.  s  <_  t ) )
264255, 263mpbird 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  <  s )
265229, 241syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
266 rerpdivcl 10595 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (ψ `  x )  e.  RR  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
267265, 266mpancom 651 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  RR )
268267ad2antll 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (ψ `  x )  /  x
)  e.  RR )
269 resubcl 9321 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (ψ `  x
)  /  x )  e.  RR  /\  1  e.  RR )  ->  (
( (ψ `  x
)  /  x )  -  1 )  e.  RR )
270268, 40, 269sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  e.  RR )
271270recnd 9070 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  e.  CC )
272271abscld 12193 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  e.  RR )
273 lelttr 9121 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  e.  RR  /\  t  e.  RR  /\  s  e.  RR )  ->  (
( ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <_  t  /\  t  <  s )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
274272, 260, 262, 273syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <_  t  /\  t  <  s )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
275264, 274mpan2d 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <_  t  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) )
276253, 275sylbird 227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( R `
 x )  /  x ) )  <_ 
t  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
277236, 276embantd 52 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
x  e.  ( y [,)  +oo )  ->  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
t )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
278277exp32 589 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( y  <_  x  ->  ( x  e.  RR+  ->  ( ( x  e.  ( y [,)  +oo )  ->  ( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) ) )
279278com24 83 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( ( x  e.  ( y [,)  +oo )  ->  ( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( x  e.  RR+  ->  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) ) )
280279ralimdv2 2746 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( A. x  e.  ( y [,)  +oo ) ( abs `  (
( R `  x
)  /  x ) )  <_  t  ->  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
281228, 280syl5bi 209 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
282281reximdva 2778 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
283282anassrs 630 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A ) )  /\  -.  s  <_ 
t )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
284283impancom 428 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A ) )  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t )  ->  ( -.  s  <_ 
t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
285284expimpd 587 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A
) )  ->  (
( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  /\  -.  s  <_  t )  ->  E. y  e.  RR+  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
286285rexlimdva 2790 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( E. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  /\  -.  s  <_  t
)  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
287222, 286mpd 15 . . . 4  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
288 ssrexv 3368 . . . 4  |-  ( RR+  C_  RR  ->  ( E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s )  ->  E. y  e.  RR  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
2891, 287, 288mpsyl 61 . . 3  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
290289ralrimiva 2749 . 2  |-  ( ph  ->  A. s  e.  RR+  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
291267recnd 9070 . . . . 5  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  CC )
292291rgen 2731 . . . 4  |-  A. x  e.  RR+  ( (ψ `  x )  /  x
)  e.  CC
293292a1i 11 . . 3  |-  ( ph  ->  A. x  e.  RR+  ( (ψ `  x )  /  x )  e.  CC )
2941a1i 11 . . 3  |-  ( ph  -> 
RR+  C_  RR )
295 ax-1cn 9004 . . . 4  |-  1  e.  CC
296295a1i 11 . . 3  |-  ( ph  ->  1  e.  CC )
297293, 294, 296rlim2 12245 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1  <->  A. s  e.  RR+  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
298290, 297mpbird 224 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    C_ wss 3280   (/)c0 3588   class class class wbr 4172    e. cmpt 4226   `'ccnv 4836   ` cfv 5413  (class class class)co 6040   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   3c3 10006   NN0cn0 10177   ZZcz 10238   RR+crp 10568   [,)cico 10874   [,]cicc 10875   ^cexp 11337   abscabs 11994    ~~> r crli 12234   TopOpenctopn 13604  ℂfldccnfld 16658    Cn ccn 17242    tX ctx 17545   -cn->ccncf 18859  ψcchp 20828
This theorem is referenced by:  pntleml  21258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-vma 20833  df-chp 20834
  Copyright terms: Public domain W3C validator