MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem1 Structured version   Unicode version

Theorem pntibndlem1 23495
Description: Lemma for pntibnd 23499. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntibndlem1.1  |-  ( ph  ->  A  e.  RR+ )
pntibndlem1.l  |-  L  =  ( ( 1  / 
4 )  /  ( A  +  3 ) )
Assertion
Ref Expression
pntibndlem1  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )

Proof of Theorem pntibndlem1
StepHypRef Expression
1 pntibndlem1.l . . . 4  |-  L  =  ( ( 1  / 
4 )  /  ( A  +  3 ) )
2 4nn 10684 . . . . . 6  |-  4  e.  NN
3 nnrp 11218 . . . . . 6  |-  ( 4  e.  NN  ->  4  e.  RR+ )
4 rpreccl 11232 . . . . . 6  |-  ( 4  e.  RR+  ->  ( 1  /  4 )  e.  RR+ )
52, 3, 4mp2b 10 . . . . 5  |-  ( 1  /  4 )  e.  RR+
6 pntibndlem1.1 . . . . . 6  |-  ( ph  ->  A  e.  RR+ )
7 3nn 10683 . . . . . . 7  |-  3  e.  NN
8 nnrp 11218 . . . . . . 7  |-  ( 3  e.  NN  ->  3  e.  RR+ )
97, 8ax-mp 5 . . . . . 6  |-  3  e.  RR+
10 rpaddcl 11229 . . . . . 6  |-  ( ( A  e.  RR+  /\  3  e.  RR+ )  ->  ( A  +  3 )  e.  RR+ )
116, 9, 10sylancl 662 . . . . 5  |-  ( ph  ->  ( A  +  3 )  e.  RR+ )
12 rpdivcl 11231 . . . . 5  |-  ( ( ( 1  /  4
)  e.  RR+  /\  ( A  +  3 )  e.  RR+ )  ->  (
( 1  /  4
)  /  ( A  +  3 ) )  e.  RR+ )
135, 11, 12sylancr 663 . . . 4  |-  ( ph  ->  ( ( 1  / 
4 )  /  ( A  +  3 ) )  e.  RR+ )
141, 13syl5eqel 2552 . . 3  |-  ( ph  ->  L  e.  RR+ )
1514rpred 11245 . 2  |-  ( ph  ->  L  e.  RR )
1614rpgt0d 11248 . 2  |-  ( ph  ->  0  <  L )
17 rpcn 11217 . . . . . . 7  |-  ( ( 1  /  4 )  e.  RR+  ->  ( 1  /  4 )  e.  CC )
185, 17ax-mp 5 . . . . . 6  |-  ( 1  /  4 )  e.  CC
1918div1i 10261 . . . . 5  |-  ( ( 1  /  4 )  /  1 )  =  ( 1  /  4
)
20 rpre 11215 . . . . . . 7  |-  ( ( 1  /  4 )  e.  RR+  ->  ( 1  /  4 )  e.  RR )
215, 20mp1i 12 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
22 3re 10598 . . . . . . 7  |-  3  e.  RR
2322a1i 11 . . . . . 6  |-  ( ph  ->  3  e.  RR )
2411rpred 11245 . . . . . 6  |-  ( ph  ->  ( A  +  3 )  e.  RR )
25 1lt4 10696 . . . . . . . . 9  |-  1  <  4
26 4re 10601 . . . . . . . . . 10  |-  4  e.  RR
27 4pos 10620 . . . . . . . . . 10  |-  0  <  4
28 recgt1 10430 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
2926, 27, 28mp2an 672 . . . . . . . . 9  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
3025, 29mpbi 208 . . . . . . . 8  |-  ( 1  /  4 )  <  1
31 1lt3 10693 . . . . . . . 8  |-  1  <  3
325, 20ax-mp 5 . . . . . . . . 9  |-  ( 1  /  4 )  e.  RR
33 1re 9584 . . . . . . . . 9  |-  1  e.  RR
3432, 33, 22lttri 9699 . . . . . . . 8  |-  ( ( ( 1  /  4
)  <  1  /\  1  <  3 )  -> 
( 1  /  4
)  <  3 )
3530, 31, 34mp2an 672 . . . . . . 7  |-  ( 1  /  4 )  <  3
3635a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  <  3 )
37 ltaddrp 11241 . . . . . . . 8  |-  ( ( 3  e.  RR  /\  A  e.  RR+ )  -> 
3  <  ( 3  +  A ) )
3822, 6, 37sylancr 663 . . . . . . 7  |-  ( ph  ->  3  <  ( 3  +  A ) )
39 3cn 10599 . . . . . . . 8  |-  3  e.  CC
406rpcnd 11247 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
41 addcom 9754 . . . . . . . 8  |-  ( ( 3  e.  CC  /\  A  e.  CC )  ->  ( 3  +  A
)  =  ( A  +  3 ) )
4239, 40, 41sylancr 663 . . . . . . 7  |-  ( ph  ->  ( 3  +  A
)  =  ( A  +  3 ) )
4338, 42breqtrd 4464 . . . . . 6  |-  ( ph  ->  3  <  ( A  +  3 ) )
4421, 23, 24, 36, 43lttrd 9731 . . . . 5  |-  ( ph  ->  ( 1  /  4
)  <  ( A  +  3 ) )
4519, 44syl5eqbr 4473 . . . 4  |-  ( ph  ->  ( ( 1  / 
4 )  /  1
)  <  ( A  +  3 ) )
4633a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
47 0lt1 10064 . . . . . 6  |-  0  <  1
4847a1i 11 . . . . 5  |-  ( ph  ->  0  <  1 )
4911rpregt0d 11251 . . . . 5  |-  ( ph  ->  ( ( A  + 
3 )  e.  RR  /\  0  <  ( A  +  3 ) ) )
50 ltdiv23 10425 . . . . 5  |-  ( ( ( 1  /  4
)  e.  RR  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( ( A  +  3 )  e.  RR  /\  0  < 
( A  +  3 ) ) )  -> 
( ( ( 1  /  4 )  / 
1 )  <  ( A  +  3 )  <-> 
( ( 1  / 
4 )  /  ( A  +  3 ) )  <  1 ) )
5121, 46, 48, 49, 50syl121anc 1228 . . . 4  |-  ( ph  ->  ( ( ( 1  /  4 )  / 
1 )  <  ( A  +  3 )  <-> 
( ( 1  / 
4 )  /  ( A  +  3 ) )  <  1 ) )
5245, 51mpbid 210 . . 3  |-  ( ph  ->  ( ( 1  / 
4 )  /  ( A  +  3 ) )  <  1 )
531, 52syl5eqbr 4473 . 2  |-  ( ph  ->  L  <  1 )
54 0xr 9629 . . 3  |-  0  e.  RR*
5533rexri 9635 . . 3  |-  1  e.  RR*
56 elioo2 11559 . . 3  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  ( L  e.  ( 0 (,) 1 )  <->  ( L  e.  RR  /\  0  < 
L  /\  L  <  1 ) ) )
5754, 55, 56mp2an 672 . 2  |-  ( L  e.  ( 0 (,) 1 )  <->  ( L  e.  RR  /\  0  < 
L  /\  L  <  1 ) )
5815, 16, 53, 57syl3anbrc 1175 1  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484   RR*cxr 9616    < clt 9617    - cmin 9794    / cdiv 10195   NNcn 10525   3c3 10575   4c4 10576   RR+crp 11209   (,)cioo 11518  ψcchp 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-rp 11210  df-ioo 11522
This theorem is referenced by:  pntibndlem2a  23496  pntibndlem2  23497  pntibnd  23499
  Copyright terms: Public domain W3C validator